Find the modulus and argument of ##\dfrac{z_1}{z_2}##

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Argument Modulus
Click For Summary
The discussion focuses on finding the modulus and argument of the complex fraction z1/z2. The calculation involves multiplying by the conjugate of the denominator and applying trigonometric identities. The final results yield a modulus of 2/3 and an argument of π/2. The use of Euler's formula is also highlighted in the simplification process. The conclusion confirms the derived values for modulus and argument.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached
Relevant Equations
Complex numbers
π
1682351380704.png


My take; i multiplied by the conjugate of the denominator...

$$\dfrac{z_1}{z_2}=\dfrac{2(\cos\dfrac{π}{3}+i \sin \dfrac{π}{3})}{3(\cos\dfrac{π}{6}+i \sin \dfrac{π}{6})}⋅\dfrac{3(\cos\dfrac{π}{6}-i \sin \dfrac{π}{6})}{3(\cos\dfrac{π}{6}-i \sin \dfrac{π}{6})}=\dfrac{2(\cos\dfrac{π}{3}+i \sin \dfrac{π}{3})}{3}⋅\dfrac{3(\cos\dfrac{π}{6}-i \sin \dfrac{π}{6})}{3}$$

...This will also realise the required result;though with some work by making use of,

##\cos a⋅\cos b-i\cos a⋅\sin b + i\sin a⋅cos b + \sin a⋅\sin b##

##=\cos a⋅\cos b+\sin a⋅\sin b-i\cos a⋅\sin b+i\sin a⋅\cos b##

##=\cos(a-b)-i\sin (a-b)##

for our case, and considering the argument part of the working we shall have,

##=\cos\left[\dfrac{π}{3}- - \dfrac{π}{6}\right]-i(\sin \left[\dfrac{π}{3}- - \dfrac{π}{6}\right]= \cos\left[\dfrac{π}{3}+\dfrac{π}{6}\right]-i(\sin \left[\dfrac{π}{3}+\dfrac{π}{6}\right]##

##=\cos\left[\dfrac{π}{2}\right]-i\sin \left[\dfrac{π}{2}\right]##
 
Last edited:
Physics news on Phys.org
Use \cos \theta + i\sin \theta = e^{i\theta}.
 
pasmith said:
Use \cos \theta + i\sin \theta = e^{i\theta}.
Fine, let me check on this again...
 
##\dfrac{z_1}{z_2}=\dfrac{2}{3}e^{i\left[\dfrac{π}{3}+\dfrac{π}{6}\right]}=\dfrac{2}{3}e^{i\left[\dfrac{π}{2}\right]}##

Therefore

Modulus =##\dfrac{2}{3}##

and

Argument= ##\dfrac{π}{2}##
 
Last edited:
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...