Find the number of ways the cake can be shared among two people

  • Thread starter Thread starter chwala
  • Start date Start date
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
This is from an A level past paper question;

i. A plate of cake holds ##12## different cakes. Find the number of ways these cakes can be shared between Alex and James if each receives an odd number of cakes.
Relevant Equations
Stats
I went through the question; find the mark scheme here;

1671529387485.png


Well i can follow the mark scheme steps but i need some clarity or rather insight. The ##12## cakes are being shared to the two persons. In my understanding the odd numbers are;

##[1,3,5,7,9,11]## Now this means that they may each get ##1## cake in ##1 ×11C_1## ways or alternatively ##^{12}C_1×2##persons...

...are they not supposed to have ##2048 ×2##?

Supposing it was ##13## people instead of ##2## ...Would the steps still be the same as shown on the markscheme? A bit confusing...

your insight appreciated...
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement:: This is a past paper question;

A plate of cake holds ##12## different cakes. Find the number of ways these cakes can be shared between Alex and James if each receives an odd number of cakes.
Relevant Equations:: Stats

I went through the question; find the mark scheme here;

View attachment 319104

Well i can follow the mark scheme steps but i need some clarity or rather insight. The ##12## cakes are being shared to the two persons. In my understanding the odd numbers are;

##[1,3,5,7,9,11]## Now this means that they may each get ##1## cake in ##1 ×11C_1## ways or alternatively ##12C_1×2##persons...

My understanding (which is consistent with the mark scheme) is that they can't each get one cake: If Alex gets one cake then James gets the remaining 11. There are {}^{12}C_{1} = {}^{12}C_{11} = 12 ways to achieve this.
 
  • Like
Likes chwala and PeroK
pasmith said:
My understanding (which is consistent with the mark scheme) is that they can't each get one cake: If Alex gets one cake then James gets the remaining 11. There are {}^{12}C_{1} = {}^{12}C_{11} = 12 ways to achieve this.
Ok, that's clear now, maybe i was not interpreting the language correctly... :cool:

... I get it now {}^{12}C_{3} = {}^{12}C_{9} = 220 ways ...
 
This is the second part of the question; i do not seem to get it.

ii. Another plate holds ##7## cup cakes, each with a different colour icing, and ##4## Brownies, each of a different size. Find the number of different ways these ##11## cakes can be arranged in a row if no Brownie is next to another Brownie.

Find the solution here;

1671587558301.png


In my understanding, they clamped the Brownies together i.e

1234567Brownie

Its clear to me that the ##7## cup cakes can be arranged in ##7!## ways no problem there... now when it come to the Brownies, i do not seem to understand the ##^8P_4## ways. Does the ##4## apply to Brownies only or all....

Unless the reasoning is like this;

BBBB
but each cell having the Brownie can arranged in ##4!# ways...secondly supposing we amend the question to all Brownies have to be next to each other, then how would this look like?

cheers
 
My other reasoning on this; since we do not want the brownies to be next to each other then the only possibility would be to have barriers in between i.e the cup cakes, that is;

BCBCBCBC
The cup cakes can be arranged like earlier stated in ##7!## ways...In whichever way we arrange them it does not matter as long as their sum total (cup cakes) =7.

For e.g;

B4Cup CakesBCBCBC

or

B2 Cup cakesB1 CupcakeB3 Cup cakesB1 Cupcake
Now we have ##8## elements implying that the brownies can be arranged in ##^8P_4## ways...giving us the desired; ##7! ×^8P_4=8467200## ways.

Cheers! Bingo!
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top