MHB Find the points of intersection of a line and a circle

AI Thread Summary
To find the points of intersection between the line y = -5 and the circle defined by (x-3)² + (y+2)² = 25, substitute y = -5 into the circle's equation. This leads to the equation (x-3)² + (-5+2)² = 25, simplifying to (x-3)² + 9 = 25. Further simplification gives (x-3)² = 16, allowing for the solution of x values. The resulting x values are x = 7 and x = -1, indicating that the line intersects the circle at two points: (7, -5) and (-1, -5). Thus, the line intersects the circle at two distinct points.
penguin_alexa
Messages
1
Reaction score
0
How do I algebraically prove how many times the line y=-5 intersects the circle (x-3)^2 + (y+2)^2 =25?
 
Mathematics news on Phys.org
What do you think you should do with y?
 
you can put y = -5 to solve for x

we get $(x-3)^2 + (-5+2)^2 = (x-3)^3+ 9 = 25$ or $(x-3)^2 = 16$
now you can solve to get x = 3 + 4 = 7 or 3-4 = - 1 so it intersects at 2 points (7,-5) and (-1,-5)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
3K
Replies
4
Views
2K
Replies
8
Views
1K
Replies
1
Views
2K
Replies
4
Views
1K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
4
Views
2K
Replies
8
Views
2K
Back
Top