Find the power series in x-x0?

Click For Summary
SUMMARY

The discussion focuses on finding the power series in the form of x-x0 for the differential equation y'' - y = 0, with x0 set to 3. The solution involves using a substitution method where z = x - x0. Participants emphasize the importance of identifying patterns in the coefficients of the series, particularly separating even and odd indices. The final conclusion is that the coefficients can be expressed as a_n = a_0/n!, indicating the relationship between the coefficients and factorials.

PREREQUISITES
  • Understanding of differential equations, specifically second-order linear equations.
  • Familiarity with power series and their convergence.
  • Knowledge of factorial notation and its properties.
  • Experience with mathematical induction for verifying patterns.
NEXT STEPS
  • Study the method of power series solutions for differential equations.
  • Learn about the convergence criteria for power series.
  • Explore the application of mathematical induction in proving series relationships.
  • Investigate the role of factorials in combinatorial mathematics and series expansions.
USEFUL FOR

Students studying differential equations, mathematicians interested in series solutions, and educators seeking to enhance their understanding of power series methodologies.

Math10
Messages
301
Reaction score
0

Homework Statement


Find the power series in x-x0 for the general solution of y"-y=0; x0=3.

Homework Equations


None.

The Attempt at a Solution


Let me post my whole work:
 

Attachments

  • Math1.jpg
    Math1.jpg
    40.5 KB · Views: 457
Physics news on Phys.org
What I did was the substitution method using z=x-x0.
The answer for this problem is
Math2.jpg
 
Math10 said:

Homework Statement


Find the power series in x-x0 for the general solution of y"-y=0; x0=3.

Homework Equations


None.

The Attempt at a Solution


Let me post my whole work:

No, please don't. The PF standard is for you to type out the problem and the solution, reserving images for things like diagrams or geometric constructions, etc.

I know that some helpers answer questions about handwritten solution images, but most will not bother. You should consult the pinned post "guidelines for Students and Helpers", by Vela, for a good explanation about this and similar issues.
 
Can you please take a look at the work that I posted? It's clearly written.
 
Math10 said:
Can you please take a look at the work that I posted? It's clearly written.

It looks like the right answer in post #2, if that's all you are asking.
 
I know that's the right answer, but what should I do to get to the right answer after the last step in my work? That's where I got stucked.
 
Math10 said:
I know that's the right answer, but what should I do to get to the right answer after the last step in my work? That's where I got stucked.

You need to spot a pattern in the coefficients (and verify it by induction if need be). You can see from the answer that you need to separate ##n## even and odd.
 
You mean this:

n=2m (even index)
a2m+2=a2m/[(2m+2)(2m+1)]
----------------------------------------------------------------------------
n=2m+1 (odd index)
a2m+3=a2m+1/[(2m+3)(2m+2)]
 
Math10 said:
You mean this:

n=2m (even index)
a2m+2=a2m/[(2m+2)(2m+1)]
----------------------------------------------------------------------------
n=2m+1 (odd index)
a2m+3=a2m+1/[(2m+3)(2m+2)]

Yes, but can you see the pattern? The answer gives you a big clue!
 
  • #10
So how do I get to the answer? I know where x-3 comes from.
 
  • #11
Math10 said:
So how do I get to the answer? I know where x-3 comes from.

You get to the answer by noticing that ##1 \times 2 \times 3 \times \dots \times n = n!##

The clue was that the answer has ##n!## in it.
 
  • #12
I still don't really get it.
 
  • #13
Math10 said:
I still don't really get it.

You have:

##(n+2)(n+1)a_{n+2} = a_n##

Hence:

##a_{n+2} = \frac{a_n}{(n+2)(n+1)}##

For ##n## even this gives:

##a_2 = \frac{a_0}{2}, \ a_4 = \frac{a_2}{12} = \frac{a_0}{24}, \ a_6 = \frac{a_4}{30} = \frac{a_0}{720} \dots##

And, now by insight, inspiration (or looking at the answer) you have to notice that ##2, 24, 720 \dots## are the even factorials and hence ##a_n = \frac{a_0}{n!}##

Odd ##n## is much the same.
 
  • Like
Likes   Reactions: Math10
  • #14
I got it now. Thank you so much.
 
  • #15
PeroK said:
You have:

##(n+2)(n+1)a_{n+2} = a_n##

Hence:

##a_{n+2} = \frac{a_n}{(n+2)(n+1)}##

For ##n## even this gives:

##a_2 = \frac{a_0}{2}, \ a_4 = \frac{a_2}{12} = \frac{a_0}{24}, \ a_6 = \frac{a_4}{30} = \frac{a_0}{720} \dots##

And, now by insight, inspiration (or looking at the answer) you have to notice that ##2, 24, 720 \dots## are the even factorials and hence ##a_n = \frac{a_0}{n!}##

Odd ##n## is much the same.
This thread is in the Homework Help forums...
 

Similar threads

  • · Replies 68 ·
3
Replies
68
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
6
Views
2K
Replies
7
Views
2K
Replies
8
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K