- 42,783
- 10,488
One thing this thread has shown me is how hard it can be to discriminate between an exponential and a power law just based on the data.naviakam said:Yes.
I went back to your data in post #43 and found very good fits for both types. So I plotted the one against the other over the range of the x values, 460 to 1026. I.e. yexp against ypow where:
##y_{exp}=e^{-\frac x{50}}## and ##y_{pow}=x^{-10}##.
The graph is an excellent fit to ##y_{pow}=2.28*10^{-23}y_{exp}+1.01*10^{-29}##. I found this very hard to believe, but I cannot see any errors in my work.
Of course, it could not remain so straight as x approaches zero since ypow would shoot off to infinity.
I strongly suspect a general principle here, but I haven't figured out the details. Probably something to do with which terms in the expansion of e-λx dominate for a given x.From this I suggest that you should treat all sets of data as being of the same type, either power or exp, and see which fits better overall.
I have to agree that for the data in post #57 power law looks more persuasive than exponential, so maybe take all as being power.Edit:
Tried other powers, an x range of 500 to 1000, and observed a general behaviour that ##x^{-n}## v. ##e^{-knx}## is a pretty straight line where k=0.00128 and n ranges from 4 to 12. But if I change the range of x (still over an octave) it breaks down quite fast; probably need k to be a function of a, where the x range is a to 2a.