Find the probability of choosing exactly 4 red cards

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Cards Probability
Click For Summary

Homework Help Overview

The discussion revolves around calculating the probability of selecting exactly 4 red cards from a set, utilizing concepts from probability theory, specifically the hypergeometric and binomial distributions. Participants explore the implications of replacement versus no replacement in this context.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants present various methods for calculating probabilities, including hypergeometric and binomial approaches. Questions arise regarding the distinctions between these distributions, particularly in relation to replacement scenarios. Some participants share their calculations and reasoning, while others suggest reconsidering the assumptions made in their approaches.

Discussion Status

The discussion is active, with multiple participants contributing different methods and interpretations. Some guidance has been offered regarding the nature of the distributions, and there is an acknowledgment of the complexity of the topic. However, no consensus has been reached on a single approach or solution.

Contextual Notes

Participants note the challenges of understanding the underlying principles of probability and the necessity of considering various methods and assumptions in their calculations. There is also mention of the need to account for different sequences in drawing cards.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
see attached.
Relevant Equations
hypergeometric distribution
1647408447895.png

1647408478405.png

Find the question and solution here ( sorry its a bit blurred) ... given using the hypergeometric method...i wanted to understand what is the clear distinction between hypergeometric and binomial distribution? Could it be in in reference to no replacement and replacement...?

My approach on this question;
Let ##R## = red and ##B##= black.
##P_r(RRRRB)##= ##\dfrac {6}{20}##×##\dfrac {5}{19}##×##\dfrac {4}{18}##×##\dfrac {3}{17}##×##[5×####\dfrac {14}{16}]##=##0.0135## as required. Black can be arranged in ##5## different ways...cheers
 
Last edited:
Physics news on Phys.org
chwala said:
i wanted to understand what is the clear distinction between hypergeometric and binomial distribution? Could it be in in reference to no replacement and replacement...?
You can look these terms up. Binomial distribution assumes the same probability each time, which in this case means the number of red and black cards do not change, which means the card chosen each time must be replaced.
chwala said:
My approach on this question;
Let ##r## = red and ##b##= black.
##P(rrrrb)##= ##\frac {6}{20}##×##\frac {5}{19}##×##\frac {4}{18}##×##\frac {3}{17}##×##[5×####\frac {14}{16}]##=##0.0135## as required. Black can be arranged in ##5## different ways...cheers
Okay.
 
PeroK said:
You can look these terms up. Binomial distribution assumes the same probability each time, which in this case means the number of red and black cards do not change, which means the card chosen each time must be replaced.

Okay.
Ok Perok, looks like i have to dedicate time to go through the literature...Math is vast! A whole world by itself and not for the faint of hearts! :cool:
 
From my study we can also realize the required result by having,

##P_r[RRRRB]##=##\dfrac{5C4×15C2}{20C6}##=##0.0135## i.e by using symmetry...
 
I was looking at a similar question, i do not want to start a new thread as the questions are more or less the same...

consider this question;
1647438528733.png


Now i am trying to use the old school way :cool: in finding the solution, actually i am trying to use the tree diagram, now from my tree diagram below

1647439829343.png


I have the following ##3## possibilities;
##P[bbwwrr]## or ##P[wwrrbb]## or ##P[rrbbww]##.
it follows from my calculations that ##P[bbwwrr]##=##P[wwrrbb]##=##P[rrbbww]##.
i.e,
##P[bbwwrr]##=##\dfrac{5×4×10×9×15×14}{30×29×28×27×26×25}##=##\dfrac {1}{1131}##

Now from my reasoning, ##bb, ww## and ##rr## may be chosen each in ##2## ways thus giving us ##6##ways... Secondly, when considering say, ##P[bbwwrr]##, the first term can be chosen in ##1## way only and the rest can be chosen in ##5## ways therefore we shall have,
##P[bbwwrr]##=##\dfrac {1}{1131}##×##5##×##6##=##\dfrac {30}{1131}##
The required probability value is given by adding,
##P[bbwwrr]## + ##P[wwrrbb]## +##P[rrbbww]##=##\dfrac {90}{1131}##=##\dfrac {30}{377}##=##0.0795755968##
 
Last edited:
chwala said:
Now i am trying to use the old school way in finding the solution, actually i am trying to use the tree diagram, now from my tree diagram, i have the following possibilities;

##P[bbwwrr]## or ##P[wwrrbb]## or ##P[rrbbww]##,
it follows that ##P[bbwwrr]=P[wwrrbb]=P[rrbbww]## from my calculations...
i.e,
##P[bbwwrr]##=##\dfrac{5×4×10×9×15×14}{30×29×28×27×26×25}##
If you want to do it that way, you need to count all the different ways you can get two of each (in terms of the sequence the balls are drawn). You have ##bbrrww, brbrww, brrbww \dots##. So, a lot more than three ways. Moreover, that all of these are equally likely may need some justification.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
8K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
9
Views
5K
Replies
2
Views
4K