(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Find the real and imaginary part of sin(4+3i)

2. Relevant equations

sinx = [tex]\frac{e^z - e^(-z)}{2i}[/tex]

cosx = [tex]\frac{e^z + e^(-z)}{2}[/tex]

sin(iy) = i[tex]\frac{e^y - e^(-y)}{2}[/tex]

cos(iy) = [tex]\frac{e^y + e^(-y)}{2}[/tex]

various trig identities

3. The attempt at a solution

So I used sin(x+y) trig identity and got

sin4*cos3i + sin3i*cos4

I turned them all into exponents using the appropriate equations stated in (2).

I got to a point where nothing is really calculable by hand/head. Is there an easier way to do this or does the calculator need to be used at a certain point to calculate the real part(terms grouped w/o i) and the imaginary part (terms grouped with i).

If so, then I guess I need help getting the terms grouped together to calculate the real and imaginary parts.

Where I am stuck is at:

[tex]\frac{e^{3+4i}+e^{-3+4i}-e^{3-4i}+e^{-3-4i}}{4i}[/tex] +

[tex]\frac{e^{3+4i}-e^{-3+4i}+e^{3-4i}-e^{-3-4i}}{4}[/tex]

(the two fractions should be added together)

Now what should I do with all these lovely exponents? Should I have even gone this route?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Find the real and imaginary part of sin(4+3i)

**Physics Forums | Science Articles, Homework Help, Discussion**