- #1
- 8
- 1
Homework Statement
If ##\{ x \}## denotes the fractional part of x, then solve:
## \{ x \} + \{ -x \} = x^2 + x -6##
It's provided that there are going to be 4 roots of this equation. And two of them will be integers.
Homework Equations
## 0 \lt \{ x \} \lt 1~~\text{if}~~x \not\in I##
## \{ x \} = 0~~\text{if}~~x \in I ##
The Attempt at a Solution
CASE 1: When ## x \in I##
⇒ ## 0 + 0 = x^2 +x -6 ##
⇒ ## x = -3, 2##
I got two integer roots here.
CASE 2: When ## x \not\in I##
## \text{Let, }~~x=i+f ,~~\text{where}~~i \in I~~\text{and}~~0<f<1 ##
⇒ ## \{ i+f \} + \{ -(i+f) \} = (i+f)^2 + (i+f) - 6 ##
⇒ ## f +f = (i^2 +f^2 +2if) + (i+f) -6 ##
⇒ ## f^2 + (2i-1)f + (i^2 + i -6) = 0 ##
⇒ ## f = \frac{(1-2i) \pm \sqrt{(2i-1)^2 -4(i^2 + i -6)}}{2} ##
⇒ ## f = \frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} ##
Now
## 0<f<1 ##
⇒ ## 0<\frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} <1##
⇒ ## \frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} >0 ~~ \text{and} ~~ \frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} <1 ##
⇒ ##(1-2i) \pm \sqrt{8i^2 -23}>0 ~~ \text{and} ~~ (1-2i) \pm \sqrt{8i^2 -23}<2 ##
⇒ ##\pm \sqrt{8i^2 -23}>2i-1 ~~ \text{and} ~~ \pm \sqrt{8i^2 -23}<2i+1 ##
Squaring,
⇒ ##8i^2 -23>4i^2 -4i +1 ~~ \text{and} ~~ 8i^2 -23<4i^2 +4i +1 ##
⇒ ##4i^2 +4i -24>0 ~~ \text{and} ~~ 4i^2 -4i -24<0 ##
⇒ ##i^2 +i -6>0 ~~ \text{and} ~~ i^2 -i -6<0 ##
⇒ ##(i+3)(i-2)>0 ~~ \text{and} ~~ (i-3)(i+2)<0 ##
⇒ ##(i>2 \text{or} i<-3) ~~ \text{and} ~~ (i>-2 \text{and} i<3) ##
⇒ ##2<i<3##
but this gives no definite solution.
Please help me.
Thank you.