Find the slope of the secant to the curve f(x)=-3logx+2 between these points:

Click For Summary

Discussion Overview

The discussion revolves around finding the slope of the secant line to the curve defined by the function f(x) = -3log(x) + 2 between specified points. Participants explore methods for calculating the slope, including both numerical and derivative approaches, while seeking confirmation of their calculations and methods.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant calculates the slope using the formula m = (Y2 - Y1) / (X2 - X1) for two sets of points and seeks confirmation of their results.
  • Another participant confirms the correctness of the first calculation and suggests that the second calculation is analogous, implying it is likely correct as well.
  • A participant describes their process of finding the derivative of the function and calculates its value at x = 1, asking if their method is correct.
  • A later reply suggests deriving a general formula for the slope that can be applied to multiple values of Δx, demonstrating the calculation for specific Δx values and providing approximate results.
  • There is a suggestion that using calculus may not be expected for the problem, indicating differing expectations regarding the methods used.

Areas of Agreement / Disagreement

Participants generally agree on the methods used for calculating the slope, but there is no consensus on the expectations regarding the use of calculus or the necessity of deriving a general formula. Some participants propose different approaches without resolving which is preferable.

Contextual Notes

There are limitations regarding the assumptions made about the logarithm's base, as one participant specifies using log base 10. Additionally, the discussion does not resolve whether the derivative approach is expected or appropriate for the problem.

Vela1
Messages
2
Reaction score
0
The question was too long to post in the title so I just wrote down the first part. I hope this is alright. Here is the question that I am doing right now:

6beccca94bb60e9bef8dc95118c2936f.png


This is the graphical representation (thanks to Desmos Graphing Calculator):

34d481e2a7da1543a815be27e3c5b703.png


So I have substituted the points in the equation to get their respective y-values.
For example:

f(1.1) = -3log(1.1)+2
f(1.1) =~ 1.87

I've done the questions myself using this method to find the slope of the secant line, and I wanted confirmation that I was doing it right.

----------------------------------

I've written it on paper and unfortunately I don't have a scanner so I will just type out (i) and (ii) to show my rationale.

4.a)

i] m = (Y2-Y1) / (X2-X1)
= (1.097-2) / (2-1)
= -0.903 / 1
m = -0.903

ii] m = (Y2-Y1) / (X2-X1)
= (1.472-2) / (1.5-1)
= -0.528 / 0.5
m = -1.056

------------------------------------------------

I just wanted to know if I was doing it correctly, and if not how can I answer this question? Thanks in advance.
 
Physics news on Phys.org
Your example shows you're using $\log(x)=\log_{10}(x)$. If so, it appears your first one is correct; I didn't bother to check the second, as it's analogous. Looks fine to me!
 
OK, thank you. I just have one more question:

ec9f656f7a6a93b490aa2642ed779350.png


This is the second part to question #4. I wanted to do it myself before I confirmed my answer here.

Here are my steps:

I found the derivative of the initial equation: f(x) = -3log(x)+2

The derivative was: f(x) = (-3) / (ln[10] x (x))

So I substituted 1 for x, and the answer I got was -1.303. I rounded it to 3 decimal places. Is this the correct method, or is there another way?

Thanks in advance.
 
Yes, you are doing fine. I think what I would do is recognize all four questions are the same except for one parameter, $\Delta x$. So I would derive a formula into which I could then just plug into. In other words, work the problem once instead of four times.

The slope is given by:

$$m=\frac{\Delta f}{\Delta x}=\frac{f\left(x+\Delta x \right)-f(x)}{\Delta x}$$

Now, using the given definition of $f(x)$, we may write:

$$m=\frac{\left(-3\log\left(x+\Delta x \right)+2 \right)-\left(-3\log\left(x \right)+2 \right)}{\Delta x}=\frac{3\log\left(\frac{x}{x+\Delta x} \right)}{\Delta x}$$

With $x=1$, there results:

$$m=\frac{3\log\left(\frac{1}{1+\Delta x} \right)}{\Delta x}$$

a) $$\Delta x=1$$

$$m=\frac{3\log\left(\frac{1}{1+1} \right)}{1}=-3\log(2)\approx-0.903$$

b) $$\Delta x=\frac{1}{2}$$

$$m=\frac{3\log\left(\frac{1}{1+\frac{1}{2}} \right)}{\frac{1}{2}}=6\log\left(\frac{2}{3} \right)\approx-1.057$$

Now just plug-n-chug for the remaining two. :D

The formula we derived will be very useful in answering part b). Let $\Delta x$ get smaller and smaller until two successive results agree to 3 decimal places. Or, as you did, you can use calculus, but I suspect you are not expected to be able to differentiate.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 40 ·
2
Replies
40
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K