Find the sum of a^(1/3)+b^(1/3)+c^(1/3)

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
SUMMARY

The sum of the cube roots \( a^{1/3} + b^{1/3} + c^{1/3} \) for the real numbers \( a, b, c \) defined by the equations \( a+b+c = ab+bc+ac = -\frac{1}{2} \) and \( abc = \frac{1}{8} \) is evaluated to be \( s = \sqrt[3]{\frac{5 - 3\sqrt[3]{7}}{2}} \approx -0.7175 \). The cubic equation with roots \( a, b, c \) is \( x^3 + \frac{1}{2}x^2 - \frac{1}{2}x - \frac{1}{8} = 0 \). The transformation to find \( s \) involves manipulating the roots of the cubic equations and applying the relationships between the sums and products of the roots.

PREREQUISITES
  • Understanding of cubic equations and their roots
  • Familiarity with Vieta's formulas
  • Knowledge of cube roots and their properties
  • Ability to manipulate algebraic expressions and equations
NEXT STEPS
  • Study Vieta's formulas in depth for polynomial equations
  • Learn about the properties of cube roots and their applications
  • Explore advanced techniques in solving cubic equations
  • Investigate numerical methods for approximating roots of polynomials
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in solving polynomial equations and understanding the properties of roots.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be real numbers such that

$a+b+c=ab+bc+ac=-\dfrac{1}{2}\\abc=\dfrac{1}{8}$

Evaluate $a^{\tiny\dfrac{1}{3}}+b^{\tiny\dfrac{1}{3}}+c^{\tiny\dfrac{1}{3}}$.
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b$ and $c$ be real numbers such that

$a+b+c=ab+bc+ac=-\dfrac{1}{2}\\abc=\dfrac{1}{8}$

Evaluate $a^{\tiny\dfrac{1}{3}}+b^{\tiny\dfrac{1}{3}}+c^{\tiny\dfrac{1}{3}}$.
[sp]The equation with roots $a$, $b$ and $c$ is $x^3 + \frac12x^2 - \frac12x - \frac18 = 0$.

Let $y^3 - sy^2 + ty - \frac12=0$ be the equation with roots $a^{1/3}$, $b^{1/3}$ and $c^{1/3}$. (Note that the constant term is $-(abc)^{1/3} = -\frac12$.) The sum of the roots of that equation is $s = a^{1/3} + b^{1/3} + c^{1/3}$, so we want to find $s$.

Put $y^3=x$ to see that the equation $x - sx^{2/3} + tx^{1/3} - \frac12=0$ has roots $a$, $b$ and $c$. Write that equation as $x - \frac12 = sx^{2/3} - tx^{1/3}$, then cube both sides to get $$\bigl(x - \tfrac12\bigr)^3 = x(sx^{1/3} - t)^3,$$ $$\begin{aligned} x^3 - \tfrac32x^2 + \tfrac34x -\tfrac18 &= x(s^3x - 3s^2tx^{2/3} + 3st^2x^{1/3} - t^3) \\ &= x\bigl(s^3x - 3st(sx^{2/3} - tx^{1/3}) - t^3\bigr) \\ &= x\bigl(s^3x - 3st(x - \tfrac12) - t^3\bigr), \end{aligned} $$ $$x^3 - x^2\bigl(\tfrac32 + s^3 - 3st\bigr) +x\bigl(\tfrac34 - \tfrac32st + t^3\bigr) - \tfrac18 = 0.$$ Compare that with the original equation for $x$ to see that $$s^3 = -2 + 3st,$$ $$ t^3 = -\tfrac54 + \tfrac32st.$$ Multiply those two equations to get $$s^3t^3 = \tfrac52- \tfrac{27}4st + \tfrac92s^2t^2.$$ Now multiply by $8$ and write $z = 2st$: $$z^3 - 9z^2 + 27z - 20 = 0,$$ $$(z-3)^3 = -7,$$ $$z = 3 - \sqrt[3]7.$$ So $ st = \frac12(3 - \sqrt[3]7)$ and therefore $$s^3 = -2 + 3st = \frac{5 - 3\sqrt[3]7}2.$$ Finally, $s = {\large \sqrt[3]{\dfrac{5 - 3\sqrt[3]7}2}} \approx -0.7175.$

[/sp]
 
Thanks Opalg for your awesome solution!(Cool)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K