Find the sum of the first 11 terms of given series

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Series Sum Terms
Click For Summary
SUMMARY

The discussion centers on calculating the sum of the first 11 terms of the series $$\frac{19}{99}+\frac{199}{999}+\frac{1999}{9999}+ \cdots$$. The initial attempts involved expressing the nth term as $$\sum_{k=1}^{11} \frac{2(10)^k-1}{10(10^k)-1}$$, but this approach led to complications. Ultimately, participants concluded that utilizing a Computer Algebra System (CAS) like Wolfram Alpha is the most effective method for obtaining the exact sum.

PREREQUISITES
  • Understanding of series and summation notation
  • Familiarity with Computer Algebra Systems (CAS)
  • Knowledge of mathematical series convergence
  • Basic algebraic manipulation skills
NEXT STEPS
  • Explore how to use Wolfram Alpha for series summation
  • Learn about the properties of geometric and non-geometric series
  • Study advanced techniques in series manipulation and convergence
  • Investigate other Computer Algebra Systems like Maple or Mathematica
USEFUL FOR

Mathematicians, students studying calculus or series, and anyone interested in computational methods for solving complex summation problems.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

This problem vexes me until my mind hurts.

Problem:

Find the sum of the first 11 terms of the series $$\frac{19}{99}+\frac{199}{999}+\frac{1999}{9999}+ \cdots$$

Attempt:

I managed only to find the expression of the nth term of the given series and I got

$$\frac{19}{99}+\frac{199}{999}+\frac{1999}{9999}+ \cdots+11^{th} term=\sum_{k=1}^{11} \frac{2(10)^k-1}{10(10^k)-1}=\sum_{k=1}^{11} \left( \frac{1}{5}-\frac{4}{5(10(10^k)-1)} \right)$$

$$=\frac{11}{5}-\frac{4}{5} \left( \frac{1}{99}+\frac{1}{999}+ \cdots + 11^{th} term \right)$$

and I noticed this $$\sum_{k=1}^{11} \frac{4}{5(10(10^k)-1)} $$isn't a geometric series and thus by rewriting the problem in this manner is a dead end and it won't solve the problem.

So I tried to break the given series as follows:

$$\frac{19}{99}+\frac{199}{999}+\frac{1999}{9999}+ \cdots+11^{th} term=(\frac{1}{99}+\frac{9}{99})+(\frac{1}{999}+ \frac{2(99)}{999})+ \cdots+11th term$$

$$=\frac{1}{99}+\frac{1}{999}+ \cdots + 11^{th} term+2 \left( \frac{99}{999}+\frac{999}{9999}+ \cdots + 11^{th} term \right)$$and I know this is another cul-de-sac and I am getting so mad right now, I just don't see how to approach the problem.

Could anyone help me, please?

Thanks in advance.
 
Physics news on Phys.org
anemone said:
Hi MHB,

This problem vexes me until my mind hurts.

Problem:

Find the sum of the first 11 terms of the series $$\frac{19}{99}+\frac{199}{999}+\frac{1999}{9999}+ \cdots$$

Attempt:

I managed only to find the expression of the nth term of the given series and I got

$$\frac{19}{99}+\frac{199}{999}+\frac{1999}{9999}+ \cdots+11^{th} term=\sum_{k=1}^{11} \frac{2(10)^k-1}{10(10^k)-1}=\sum_{k=1}^{11} \left( \frac{1}{5}-\frac{4}{5(10(10^k)-1)} \right)$$

Alas, I don't think you made a valid move there. It is perilous to cancel things that aren't factors. You can separate out the two sums:
$$ \sum_{k=1}^{11} \frac{2(10)^k-1}{10^{k+1}-1}=
2\sum_{k=1}^{11} \frac{10^k}{10^{k+1}-1}
- \sum_{k=1}^{11} \frac{1}{10^{k+1}-1}.$$
I'm not sure where this lands you. I would just hand it over to a CAS at this point.

You could try get a common denominator, which would look something like
$$\prod_{j=1}^{11}(10^{j+1}-1).$$
The resulting expression would be rather tedious to sort out.
 
Ackbach said:
Alas, I don't think you made a valid move there. It is perilous to cancel things that aren't factors. You can separate out the two sums:
$$ \sum_{k=1}^{11} \frac{2(10)^k-1}{10^{k+1}-1}=
2\sum_{k=1}^{11} \frac{10^k}{10^{k+1}-1}
- \sum_{k=1}^{11} \frac{1}{10^{k+1}-1}.$$
I'm not sure where this lands you. I would just hand it over to a CAS at this point.

You could try get a common denominator, which would look something like
$$\prod_{j=1}^{11}(10^{j+1}-1).$$
The resulting expression would be rather tedious to sort out.

Thank you for the reply, Ackbach!:)

Yes, after spending more time to attempt to overcome the problem on my own, I agree that it's best to let the problem be handled by wolfram or any other CAS in order to get the exact value of the sum.
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K