Find the sum of the series ##\sum_{r=n+1}^{2n} u_r##

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Series Sum
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
See attached
Relevant Equations
Sum of series
Find question and solution here

1653735491365.png


1653735522747.png


Part (i) is clear to me as they made use of,

$$\sum_{r=n+1}^{2n} u_r=\sum_{r=1}^{2n} u_r-\sum_{r=1}^{n} u_r$$
to later give us the required working to solution...
...
##4n^2(4n+3)-n^2(2n+3)=16n^3+12n^2-2n^3-3n^2=14n^3+9n^2## as indicated.

My question is on the second part,

1653735657828.png


1653735683142.png


I can see that they still made use of
let ##r=2n, ⇒1n=r-1## is that correct? giving us

##4n^2(4n+3)-n^2(2n+3)=r^2(2⋅r+3)-(r-1)^2(2(r-1)+3)##

##4n^2(4n+3)-n^2(2n+3)=r^2(2r+3)-(r-1)^2(2r+1)=6r^2-1##

I need more insight on the highlighted part. Thanks
 
Physics news on Phys.org
chwala said:
Homework Statement:: See attached
Relevant Equations:: Sum of series

Find question and solution here

View attachment 302024

View attachment 302025

Part (i) is clear to me as they made use of,

$$\sum_{r=n+1}^{2n} u_r=\sum_{r=1}^{2n} u_r-\sum_{r=1}^{n} u_r$$
to later give us the required working to solution...
...
##4n^2(4n+3)-n^2(2n+3)=16n^3+12n^2-2n^3-3n^2=14n^3+9n^2## as indicated.

My question is on the second part,

View attachment 302026

View attachment 302027

I can see that they still made use of
let ##r=2n, ⇒1n=r-1## is that correct? giving us

##4n^2(4n+3)-n^2(2n+3)=r^2(2⋅r+3)-(r-1)^2(2(r-1)+3)##

##4n^2(4n+3)-n^2(2n+3)=r^2(2r+3)-(r-1)^2(2r+1)=6r^2-1##

I need more insight on the highlighted part. Thanks
Why don't you use ##u_r=\sum_{k=1}^r u_k - \sum_{k=1}^{r-1} u_k##?
 
fresh_42 said:
Why don't you use ##u_r=\sum_{k=1}^r u_k - \sum_{k=1}^{r-1} u_k##?
@fresh_42 let me check it out...
 
fresh_42 said:
Why don't you use ##u_r=\sum_{k=1}^r u_k - \sum_{k=1}^{r-1} u_k##?
...but isn't that what i used? let me copy paste it here,

let ##r=2n, ⇒1n=r-1## is that correct? giving us ...
 
chwala said:
...but isn't that what i used? let me copy paste it here,

let ##r=2n, ⇒1n=r-1## is that correct? giving us ...
I don't know. I gave up reading when I saw let ##r=2n##. How could this help to find ##u_r##. The reference to ##2n## and ##n-1## is misleading, to say the least.
 
  • Like
Likes chwala
Your solution is correct. Now that I did the algebra I ended up with the same result.
 
fresh_42 said:
Your solution is correct. Now that I did the algebra I ended up with the same result.
Thanks for your input...
 
chwala said:
Thanks for your input...
But what was your question? Which kind of insight were you looking for?
I would write it down as
\begin{align*}
u_r&=\sum_{k=1}^r u_k-\sum_{k=1}^{r-1} u_k\\
&=r^2(2r+3)-(r-1)^2(2(r-1)+3)\\
&\ldots \\
&=6r^2-1
\end{align*}
 
fresh_42 said:
But what was your question? Which kind of insight were you looking for?
I would write it down as
\begin{align*}
u_r&=\sum_{k=1}^r u_k-\sum_{k=1}^{r-1} u_k\\
&=r^2(2r+3)-(r-1)^2(2(r-1)+3)\\
&\ldots \\
&=6r^2-1
\end{align*}
The change of variable from ##2n## to ##r## that was the part i needed more insight...could we as well have ##r+1## and ##r##? or ##r+2## and ##r+1##? That is my question...
 
  • #10
chwala said:
The change of variable from ##2n## to ##r## that was the part i needed more insight...
Yes, that was disturbing. Did post #8 answer your question?

You can also check the result with the known formulas
##\sum_{r=1}^n r^2 = \dfrac{1}{6} n (n + 1) (2 n + 1)## and ##\sum_{r=1}^n 1= n## and see whether ##\sum_{r=1}^n u_r=\sum_{r=1}^n (6n^2-1) ## yields the original formula in post #1.
 
  • #11
fresh_42 said:
Yes, that was disturbing. Did post #8 answer your question?

You can also check the result with the know formulas
##\sum_{r=1}^n r^2 = \dfrac{1}{6} n (n + 1) (2 n + 1)## and ##\sum_{r=1}^n 1= n## and see whether ##\sum_{r=1}^n u_r=\sum_{r=1}^n (6n^2-1) ## yields the original formula in post #1.
Post ##8## is clear to me...
 
  • #12
fresh_42 said:
Yes, that was disturbing. Did post #8 answer your question?

You can also check the result with the known formulas
##\sum_{r=1}^n r^2 = \dfrac{1}{6} n (n + 1) (2 n + 1)## and ##\sum_{r=1}^n 1= n## and see whether ##\sum_{r=1}^n u_r=\sum_{r=1}^n (6n^2-1) ## yields the original formula in post #1.
Yes it does, we shall have;
##6r^2=(n^2+n)(2n+1)##
##6r^2=2n^3+3n^2+n##
##6r^2-1=2n^3+3n^2##

Yap this looks more straightforward...
 
  • Like
Likes fresh_42
Back
Top