Find the total derivative of ##u## with respect to ##x##

chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
see attached
Relevant Equations
total derivatives
see attached below; the textbook i have has many errors...

1644283613775.png


clearly ##f_x## is wrong messing up the whole working to solution...we ought to have;
##\frac {du}{dx}=(9x^2+2y)+(2x+8y)3=9x^2+2y+6x+24y=9x^2+6x+26y##
 
Last edited:
Physics news on Phys.org
\frac{du}{dx}=9x^2+2y+2x\frac{dy}{dx}+8y\frac{dy}{dx}=9x^2+2(3x+5)+2x3+8(3x+5)3
Expression ##u_x## seems ambiguous to me. How can we change x without changing y?
 
Last edited:
chwala said:
Homework Statement:: see attached
Relevant Equations:: total derivatives

see attached below; the textbook i have has many errors...

View attachment 296761

clearly ##f_x## is wrong messing up the whole working to solution...we ought to have;
##u_x=(9x^2+2y)+(2x+8y)3=9x^2+2y+6x+24y=9x^2+6x+26y##
Their answer has a typo. The very first term on the right side should be ##9x^2##, not ##6x^2##.
 
anuttarasammyak said:
\frac{du}{dx}=9x^2+2y+2x\frac{dy}{dx}+8y\frac{dy}{dx}=9x^2+2(3x+5)+2x3+8(3x+5)3
Expression ##u_x## seems ambiguous to me. How can we change x without changing y?
yeah..let me amend that... we want total derivative and not partial derivative...i posted this using my android phone and looks like i did not get it right...:cool:
 
  • Like
Likes anuttarasammyak
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top