# Find the unknown charges q1 and q2

## Homework Statement

The geometrical positions of point-like charges and point A situated in the xy-plane in terms of the length parameter a. The vector of electric field E at point A is shown schematically and measured as E = Exi + Eyj (that is, both Ex and Ey are given). If possible, find the unknown charges q1 and q2.

**E_2 is the electric field with respect to q2. Not shown in figure. **
**E_1 is the electric field with respect to q1. (Same direction as E) **

**k_e is Coulomb's constant.** ## Homework Equations

E[/B] = Exi + Eyj
Ex = E_1*cos(45°) - E_2*cos(45°)
Ey = E_1*sin(45°) + E_2*sin(45°)
E = F/q = (k_e*q)/r^2

## The Attempt at a Solution

E_1 [/B]= (k_e*q1)/(2a)^2 = (k_e*q1)/(4a^2)

E_2 = (k_e*q2)/(2a)^2 = (k_e*q2)/(4a^2)

Ex = (E_1 - E_2)*2/sqrt(2)

Ey = (E_1 + E_2)*2/sqrt(2)

E
= 2/sqrt(2)*(E_1 - E_2) i + 2/sqrt(2)*(E_1 + E_2) j = 2/sqrt(2)*(k_e/(4a^2))*(q1 - q2) i + 2/sqrt(2)*(k_e/(4a^2))*(q1 + q2)

I am stuck here; I'm not sure if I've been going about this correctly or what steps to take next.

Thank you.

Related Introductory Physics Homework Help News on Phys.org
SammyS
Staff Emeritus
Homework Helper
Gold Member

## Homework Statement

The geometrical positions of point-like charges and point A situated in the xy-plane in terms of the length parameter a. The vector of electric field E at point A is shown schematically and measured as E = Exi + Eyj (that is, both Ex and Ey are given). If possible, find the unknown charges q1 and q2.

**E_2 is the electric field with respect to q2. Not shown in figure. **
**E_1 is the electric field with respect to q1. (Same direction as E) **

**k_e is Coulomb's constant.**

View attachment 102522

## Homework Equations

E[/B] = Exi + Eyj
Ex = E_1*cos(45°) - E_2*cos(45°)
Ey = E_1*sin(45°) + E_2*sin(45°)
E = F/q = (k_e*q)/r^2

## The Attempt at a Solution

E_1 [/B]= (k_e*q1)/(2a)^2 = (k_e*q1)/(4a^2)

E_2 = (k_e*q2)/(2a)^2 = (k_e*q2)/(4a^2)

Ex = (E_1 - E_2)*2/sqrt(2)

Ey = (E_1 + E_2)*2/sqrt(2)

E
= 2/sqrt(2)*(E_1 - E_2) i + 2/sqrt(2)*(E_1 + E_2) j = 2/sqrt(2)*(k_e/(4a^2))*(q1 - q2) i + 2/sqrt(2)*(k_e/(4a^2))*(q1 + q2)

I am stuck here; I'm not sure if I've been going about this correctly or what steps to take next.

Thank you.
Hello JessieS , Welcome to PF !

Are you given any numerical values, particularly any for Ex and Ey ?

Hello JessieS , Welcome to PF !

Are you given any numerical values, particularly any for Ex and Ey ?
Thank you!

And no I am not. I am supposed to just use Ex and Ey as variables.

SammyS
Staff Emeritus
Homework Helper
Gold Member
Thank you!

And no I am not. I am supposed to just use Ex and Ey as variables.
OK.

You are on the right track.

First, at least one error. What is the distance from q1 to A and q2 to A. The square of each of those distances is 2a2, not 4a2 .

I suggest that you keep Ex and Ey separate, rather than lumping them together into one big vector expression.

You have that Ex = C⋅(q1 - q2) and Ey = C⋅(q1 + q2) , where the coefficient, C is made up of all that stuff in your equation.

OK.

You are on the right track.

First, at least one error. What is the distance from q1 to A and q2 to A. The square of each of those distances is 2a2, not 4a2 .

I suggest that you keep Ex and Ey separate, rather than lumping them together into one big vector expression.

You have that Ex = C⋅(q1 - q2) and Ey = C⋅(q1 + q2) , where the coefficient, C is made up of all that stuff in your equation.

Ok, so could I do this?

Since
Ex = 2/√2*(q1 - q2)*(ke/(2a2))

Ey = 2/√2*(q1 + q2)*(ke/(2a2))

Then
(q1 - q2) = (Ex * a2*√2)/ke
+ (q1 + q2) = (Ey * a2*√2)/ke
--------------------------------
q1 = (a2*√2)/ke * (Ex + Ey)

So then

q2 = (a2*√2)/ke * (Ey - Ex)

Is that correct?

• SammyS
SammyS
Staff Emeritus
Homework Helper
Gold Member
Ok, so could I do this?

Since
Ex = 2/√2*(q1 - q2)*(ke/(2a2))

Ey = 2/√2*(q1 + q2)*(ke/(2a2))

Then
(q1 - q2) = (Ex * a2*√2)/ke
+ (q1 + q2) = (Ey * a2*√2)/ke
--------------------------------
q1 = (a2*√2)/ke * (Ex + Ey)

So then

q2 = (a2*√2)/ke * (Ey - Ex)

Is that correct?
Yes. That's it.

Subtracting should give q2.

Yes. That's it.

Subtracting should give q2.
Thank you for your help! 