Find the value of ##a, b## and ##k## in the problem involving graphs

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    equation Roots
Click For Summary
SUMMARY

The values of ##a##, ##b##, and ##k## in the graph problem are definitively established as ##a=1##, ##b=2##, and ##k=-2##. The first assumption, where ##a=\dfrac{1}{2}b## and ##2a=b##, leads to a valid equation, while the second assumption, where ##b=\dfrac{1}{2}a## and ##2b=a##, results in a contradiction. The final equation derived is ##f(x)=-2(x-1)^2(x-2)##, which satisfies the conditions of the problem.

PREREQUISITES
  • Understanding of polynomial equations and their roots
  • Knowledge of quadratic functions and their properties
  • Familiarity with graphing techniques for polynomials
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of double roots in polynomial equations
  • Learn about the behavior of cubic functions and their graphs
  • Explore the method of completing the square for quadratic equations
  • Investigate how to determine coefficients from graph intercepts
USEFUL FOR

Mathematics students, educators, and anyone involved in algebraic graph analysis will benefit from this discussion. It provides insights into solving polynomial equations and understanding their graphical representations.

chwala
Gold Member
Messages
2,828
Reaction score
423
Homework Statement
See attached
Relevant Equations
Graphs
1700644817610.png


In my approach i have the roots of the equation being ##x=a## and ##x=b##.

There are two assumptions,
In the first assumption,

##a=\dfrac{1}{2}b##

##2a=b##

then,

##4=k(-a)^2(-2a)##

##4=-2ka^3##

##⇒ -2=ka^3##

Now since ##2a=b## then ##a=1, b=2⇒k=-2##.

our equation becomes,

##f(x)=-2(x-1)^2(x-2)##

checking using,

##f(1.5)=-2(1.5-1)^2(1.5-2)=0.25>0##

Now to the second assumption,
Let

##b=\dfrac{1}{2}a##

##2b=a##

then,

##4=k(-2b)^2(-b)##

##4=-4kb^3##

##⇒ -1=kb^3##

Now since ##2b=a## then ##b=1, a=2 ⇒k=-1##.

Our equation becomes,

##f(x)=-1(x-2)^2(x-1)##

checking using,

##f(1.5)=-2(1.5-1)^2(1.5-2)=-0.125 <0## which is a contradiction as ##y## is positive between the roots ##x=1## and ##x=2##.
Therefore the second assumption does not apply. We shall therefore have the unknown values given by:

##a=1, b=2, k=-2##.

There may be a better approach.
 
Last edited:
Physics news on Phys.org
chwala said:
Homework Statement: See attached
Relevant Equations: Graphs

View attachment 335943

In my approach i have the roots of the equation being ##x=a## and ##x=b##.

There are two possibilities,
In the first possibility,

##a=\dfrac{1}{2}b##

##2a=b##

then,

##4=k(-a)^2(-2a)##

##4=-2ka^3##

##⇒ -2=ka^3##

Now since ##2a=b## then ##a=1, b=2⇒k=-2##.

our equation becomes,

##f(x)=-2(x-1)^2(x-2)##

checking using,

##f(1.5)=-2(1.5-1)^2(1.5-2)=0.25>0##

Now to the second possibility,
Let

##b=\dfrac{1}{2}a##

##2b=a##

then,

##4=k(-2b)^2(-b)##

##4=-4kb^3##

##⇒ -1=kb^3##

Now since ##2b=a## then ##b=1, a=2 ⇒k=-1##.

Our equation becomes,

##f(x)=-1(x-2)^2(x-1)##

checking using,

##f(1.5)=-2(1.5-1)^2(1.5-2)=-0.125 <0## which is a contradiction as ##y## is positive between the roots ##x=1## and ##x=2##.

Therefore,

##a=1, b=2, k=-2##.

There may be a better approach.
Did you graph your answers to see which is right?

Hint: Double roots "touch" the x-axis, whereas single roots cross it.

Which is your double root?

-Dan
 
  • Like
Likes   Reactions: e_jane and chwala
topsquark said:
Did you graph your answers to see which is right?

Hint: Double roots "touch" the x-axis, whereas single roots cross it.

Which is your double root?

-Dan
I think i have shown that the second possibility does not apply thus we can only have the first possibility as the correct approach.
Kindly follow my working.
 
chwala said:
I think i have shown that the second possibility does not apply thus we can only have the first possibility as the correct approach.
Kindly follow my working.
You asked for a better method. What Dan's saying is that ##\dfrac{dy}{dx}(x=a) = 0##, so the double root at ##x = a## is a turning point. That gives you ##a = 1## directly.
 
  • Like
Likes   Reactions: chwala and topsquark
@chwala, your solution is much more long-winded than is necessary. One can see by inspection of the graph that a = 1 and b = 2. The equation is therefore ##y = k(x - 1)^2(x - 2)##.
Since the y-intercept is 4, k can be determined by solving the equation 4 = k(-1)(-2).
 
  • Like
Likes   Reactions: chwala, SammyS and topsquark
Mark44 said:
@chwala, your solution is much more long-winded than is necessary. One can see by inspection of the graph that a = 1 and b = 2. The equation is therefore ##y = k(x - 1)^2(x - 2)##.
Since the y-intercept is 4, k can be determined by solving the equation 4 = k(-1)(-2).
I do not think it was that straightforward. How to answer the question on script (by inspection )if it was an exam question? ...using complete square knowledge to justify ##a## as a turning point of graph I suppose.
Cheers man.
 
chwala said:
I do not think it was that straightforward. How to answer the question on script (by inspection )if it was an exam question?
It was straightforward to me. You were given the equation ##y = k(x - a)^2(x - b)## and shown that the graph has x-intercepts at x = 1 and x = 2. I'm assuming that these are the exact values, and I'm sure that was the intent of the writer of this problem.

The facts that 1) the graph had a parabolic shape that opened upward near x = 1 and 2) crossed the x-axis at x = 2, told me that the quadratic factor had to be ##(x - 1)^2## and that the linear factor had to be ##(x - 2)##. Being able to recognize the behavior of low-degree polynomials is a skill that is often taught as part of precalculus courses.
chwala said:
.using complete square knowledge to justify a as a turning point of graph I suppose.
Completing the square, if that's what you meant above, isn't helpful. The equation is already given as a product of factors.
 
  • Like
Likes   Reactions: SammyS, topsquark and PeroK

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
21
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
3K
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K