Find the wave function of a particle in a spherical cavity

Click For Summary
The discussion focuses on finding the wave function of a particle in a spherical cavity defined by specific boundary conditions. The potential is described as infinite inside the radius a and outside the radius R, with zero potential in between. The solution to the Schrödinger equation yields a wave function that vanishes at the boundaries, leading to the form $$\psi=\frac{N}{r}sin\Big(\frac{n\pi}{R-a}(r-a)\Big)$$. The parameter $$\alpha$$ is determined to be $$\frac{n\pi}{R-a}$$, which satisfies the boundary conditions. The energy levels are expressed as $$E=\frac{n^2\pi^2\hbar^2}{2m(R-a)^2}$$, confirming the correctness of the derived equations.
docnet
Messages
796
Reaction score
488
Homework Statement
psb
Relevant Equations
psb
Screen Shot 2021-02-27 at 4.52.18 PM.png
Screen Shot 2021-02-27 at 4.52.24 PM.png


(a) Let the center of the concentric spheres be the origin at ##r=0##, where r is the radius defined in spherical coordinates. The potential is given by the piece-wise function
$$V(r)=\infty, r<a$$
$$V(r)=0, a<r<R$$
$$V(r)=\infty, r<a$$
(b) we solve the Schrodinger equation and obtain
$$\psi(r)=C_1cos(\alpha r)+C_2sin(\alpha r)$$
we look for a wavefunction ##\psi(r)## that vanishes at $$r=a$$ and $$r=R$$
(c) we take $$sin(\alpha r)$$ and do a change of variables that translates ##\psi## by ##a## in the negative ##r## direction $$r=\hat{r}-a$$ We solve for an ##α## that solves the Schrodinger equation as well as the boundary condition at ##r=R##. After making adjustments by trial and error we find
$$\alpha=\frac{n\pi}{R-a}$$
$$\psi=Nsin\Big(\frac{n\pi}{R-a}(r-a)\Big)$$
$$E=\frac{n^2\pi^2\hbar^2}{2m(R-a)^2}$$
 
Physics news on Phys.org
docnet said:
(a) Let the center of the concentric spheres be the origin at ##r=0##, where r is the radius defined in spherical coordinates. The potential is given by the piece-wise function
$$V(r)=\infty, r<a$$ $$V(r)=0, a<r<R$$ $$V(r)=\infty, r<a$$
The first and third equations above are identical.

(b) we solve the Schrodinger equation and obtain
$$\psi(r)=C_1cos(\alpha r)+C_2sin(\alpha r)$$
Should the left-hand side be ##U(r)## rather than ##\psi(r)##?
 
Thank u! Re-try:

Screen Shot 2021-02-28 at 4.38.21 PM.png


(a) Let the center of the concentric spheres be the origin at ##r=0##, where r is the radius defined in spherical coordinates. The potential is given by the piece-wise function
$$V(r)=\infty, r<a$$
$$V(r)=0, a<r<R$$
$$V(r)=\infty, R<r$$
(b) we solve the Schrodinger equation and obtain
$$U(r)=C_1cos(\alpha r)+C_2sin(\alpha r)$$
we look for a wavefunction ##U(r)## that vanishes at $$r=a$$ and $$r=R$$
(c) we take $$sin(\alpha r)$$ and do a change of variables that translates ##\psi## by ##a## in the negative ##r## direction $$r=\hat{r}-a$$ We solve for an ##α## that solves the Schrodinger equation as well as the boundary condition at ##r=R##. After making adjustments by trial and error we find
$$\alpha=\frac{n\pi}{R-a}$$
$$\psi=\frac{U(r)}{r}=\frac{N}{r}sin\Big(\frac{n\pi}{R-a}(r-a)\Big)$$
$$E=\frac{n^2\pi^2\hbar^2}{2m(R-a)^2}$$
 
Your work looks correct to me.
 
:bow:
 
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

  • · Replies 21 ·
Replies
21
Views
2K
Replies
29
Views
2K
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
Replies
1
Views
2K
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
7
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K