Find thermodynamic generalized force

damarkk
Messages
11
Reaction score
2
Homework Statement
Statistical Mechanics
Relevant Equations
Canonical Ensemble, Thermodynamic generalized forces
Assume you have a microscopic pendulum you can suppose is like quantum harmonic oscillator. If the length of pendulum has variation of ##dl##, calculate the work on the pendulum and thermodynamic generalized force.
Find also the variation of mean number of extitations.


My Attempt

Firstly, I find the partition function: ##Z= \sum_n e^{-\beta\epsilon_n}##, with ##\epsilon_n = \hbar\omega(1/2 + n)## and this is the result:

##Z= \frac{1}{2sinh(\beta\hbar\omega/2)}##.

In this result ##\beta= \frac{1}{kT}##.

Then, I can write Helmholtz Free Energy: ##F = U -TS = -kT\ln{Z}##

And of course ## U = F-T\frac{\partial F}{\partial T}##


I know that ##-\frac{\partial U}{\partial x} = F_x## but if i don't know how thermodynamic variables depends on ##l## how I can compute the thermodynamic generalized force?
 
Physics news on Phys.org
##\omega## depends on l.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top