MHB Find value of x and area of parallelogram: a,b,c,P

Click For Summary
To find the value of x in vector a = (2, x, 0) such that the angle between vectors a and b = (1, 0, -1) is π/4, the cosine formula for angles between vectors is applied. The dot product of a and b, along with their magnitudes, is used to establish the relationship needed to solve for x. Once x is determined, the area of the parallelogram formed by the unit vector in the direction of b and vector c = (5, -9, 3) can be calculated using the cross product. The area is given by the magnitude of the vector product of the two vectors. This approach effectively combines vector algebra with geometric principles to solve the problem.
Niamh1
Messages
4
Reaction score
0
Hello, could someone please help me with this question? I don't even know where to begin.

Given vectors a = (2, x, 0), b = (1, 0, −1) and c = (5, −9, 3), and let P(2, 1, −1)
be a point. Find the value of x in a such that the angle between a and b is π/4, then find the area of parallelogram with adjacent sides are bˆ and c, where bˆ is the unit vector in the direction of b
 
Mathematics news on Phys.org
You should use the following facts.

The cosine of angle between $$v_1=(x_1,y_1,z_1)$$ and $v_2=(x_2,y_2,z_2)$ is $\dfrac{v_1\cdot v_2}{|v_1|\cdot|v_2|}$. Here $v_1\cdot v_2=x_1x_2+y_1y_2+z_1z_2$ is the dot product, or scalar product, of $v_1$ and $v_2$. The length of $v_1$ is denoted by $|v_1|$ and equals $\sqrt{v_1\cdot v_1}$.

The unit vector in the direction of $v$ is $\dfrac{v}{|v|}$.

The signed area of the parallelogram with adjacent sides $$v_1=(x_1,y_1,z_1)$$ and $v_2=(x_2,y_2,z_2)$ is $|v_1\times v_2|$. Here $v_1\times v_2$ is the vector product of $v_1$ and $v_2$, and it equals $\begin{vmatrix}i&j&k\\x_1&y_1&z_1\\x_2&y_2&z_2\end{vmatrix}$, where $i$, $j$ and $k$ are mutually perpendicular unit vectors in the directions of the coordinate axes.
 
Evgeny.Makarov said:
You should use the following facts.

The cosine of angle between $$v_1=(x_1,y_1,z_1)$$ and $v_2=(x_2,y_2,z_2)$ is $\dfrac{v_1\cdot v_2}{|v_1|\cdot|v_2|}$. Here $v_1\cdot v_2=x_1x_2+y_1y_2+z_1z_2$ is the dot product, or scalar product, of $v_1$ and $v_2$. The length of $v_1$ is denoted by $|v_1|$ and equals $\sqrt{v_1\cdot v_1}$.

The unit vector in the direction of $v$ is $\dfrac{v}{|v|}$.

The signed area of the parallelogram with adjacent sides $$v_1=(x_1,y_1,z_1)$$ and $v_2=(x_2,y_2,z_2)$ is $|v_1\times v_2|$. Here $v_1\times v_2$ is the vector product of $v_1$ and $v_2$, and it equals $\begin{vmatrix}i&j&k\\x_1&y_1&z_1\\x_2&y_2&z_2\end{vmatrix}$, where $i$, $j$ and $k$ are mutually perpendicular unit vectors in the directions of the coordinate axes.

Because the rule of the cosine of the angle is not entirely obvious, if you have two vectors $\displaystyle \begin{align*} \mathbf{a} \end{align*}$ and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$, then they can form two sides of a triangle, with the third side being the vector $\displaystyle \begin{align*} \mathbf{a} - \mathbf{b} \end{align*}$. Then if $\displaystyle \begin{align*} \theta \end{align*}$ is the angle between vectors $\displaystyle \begin{align*} \mathbf{a} \end{align*}$ and $\displaystyle \begin{align*} \mathbf{b} \end{align*}$, we can relate the four pieces of information with the cosine rule:

$\displaystyle \begin{align*} \left| \mathbf{a} - \mathbf{b} \right| ^2 &= \left| \mathbf{a} \right| ^2 + \left| \mathbf{b} \right| ^2 - 2\,\left| \mathbf{a}\right| \left| \mathbf{b}\right| \, \cos{ \left( \theta \right) } \\ \left( a_1 - b_1 \right) ^2 + \left( a_2 - b_2 \right) ^2 + \left( a_3 - b_3 \right) ^2 &= \left| \mathbf{a} \right| ^2 + \left| \mathbf{b} \right| ^2 - 2\,\left| \mathbf{a} \right| \left| \mathbf{b} \right| \,\cos{ \left( \theta \right) } \\ a_1^2 -2\,a_1\,b_1 + b_1^2 + a_2^2 - 2\,a_2\,b_2 + b_2^2 + a_3^2 -2\,a_3\,b_3 + b_3^2 &= \left| \mathbf{a} \right| ^2 + \left| \mathbf{b} \right| ^2 - 2\,\left| \mathbf{a} \right| \left| \mathbf{b} \right| \,\cos{ \left( \theta \right) } \\ a_1^2 + a_2^2 + a_3^2 + b_1^2 + b_2^2 + b_3^2 - 2\,\left( a_1\,b_1 + a_2\,b_2 + a_3\,b_3 \right) &= \left| \mathbf{a} \right| ^2 + \left| \mathbf{b} \right| ^2 - 2\,\left| \mathbf{a} \right| \left| \mathbf{b} \right| \,\cos{ \left( \theta \right) } \\ \left| \mathbf{a} \right| ^2 + \left| \mathbf{b} \right| ^2 - 2\,\mathbf{a}\cdot \mathbf{b} &= \left| \mathbf{a} \right| ^2 + \left| \mathbf{b} \right| ^2 - 2\,\left| \mathbf{a} \right| \left| \mathbf{b} \right| \,\cos{ \left( \theta \right) } \\ -2\,\mathbf{a}\cdot \mathbf{b} &= -2\,\left| \mathbf{a} \right| \left| \mathbf{b} \right| \,\cos{ \left( \theta \right) } \\ \mathbf{a}\cdot \mathbf{b} &= \left| \mathbf{a} \right| \left| \mathbf{b} \right|\,\cos{ \left( \theta \right) } \\ \cos{ \left( \theta \right) } &= \frac{\mathbf{a}\cdot \mathbf{b}}{\left| \mathbf{a} \right| \left| \mathbf{b} \right| } \end{align*}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
38K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
2K