Find velocity with vector or without vector

Istiak
Messages
158
Reaction score
12
Homework Statement
Find velocity with vector or without vector
Relevant Equations
vector


At the moment he wrote that ##\frac{1}{2}mv_2^2=\frac{1}{2}m(-\dot{y}+\dot{x})^2##

But, I know from vector ##v_2=\sqrt{(-\dot{y})^2+(\dot{x})^2}##. At first I (he) found that ##v_2=-\dot{y}+\dot{x}##. But, when thinking of simple velocity in ##x## and ##y## coordinate then I get $$v^2=\dot{x}^2+\dot{y}^2$$ (I remember the equation from my last book). What am I taking wrong with the top (absolute top) equation?

In the equation, ##v_2=\sqrt{(-\dot{y})^2+(\dot{x})^2}## if I square both side than I get the equation which I gave above. So, can we write that ##v=\dot{x}+\dot{y}##. Then, if we square both side than that's simple algebraic expression. Maybe, this time I am mixing Algebra with Vector this time.
 
Physics news on Phys.org
The Pythagorean theorem applies only to right-triangles.
In this problem, ##x## and ##y## are not the legs of a right-triangle in space,
and neither are ##\dot x## and ##\dot y##.

The labels of the configuration coordinates are arbitrary.
Instead of the pair ##x## and ##y## (which is suggesting unrelated ideas),
use another pair (like ## c## and ## d##).By the way, I don't think Lagrange's Equations are considered "introductory physics" in this forum.
 
robphy said:
By the way, I don't think Lagrange's Equations are considered "introductory physics" in this forum.
So, is that Advanced Physics? 🤔
 
Istiakshovon said:
So, is that Advanced Physics? 🤔
Yeah, for me at least, problems involving the Lagrangian qualify for the Advanced Physics schoolwork forum.

UPDATE -- Thread moved. :smile:
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top