Find velocity with vector or without vector

Istiak
Messages
158
Reaction score
12
Homework Statement
Find velocity with vector or without vector
Relevant Equations
vector


At the moment he wrote that ##\frac{1}{2}mv_2^2=\frac{1}{2}m(-\dot{y}+\dot{x})^2##

But, I know from vector ##v_2=\sqrt{(-\dot{y})^2+(\dot{x})^2}##. At first I (he) found that ##v_2=-\dot{y}+\dot{x}##. But, when thinking of simple velocity in ##x## and ##y## coordinate then I get $$v^2=\dot{x}^2+\dot{y}^2$$ (I remember the equation from my last book). What am I taking wrong with the top (absolute top) equation?

In the equation, ##v_2=\sqrt{(-\dot{y})^2+(\dot{x})^2}## if I square both side than I get the equation which I gave above. So, can we write that ##v=\dot{x}+\dot{y}##. Then, if we square both side than that's simple algebraic expression. Maybe, this time I am mixing Algebra with Vector this time.
 
Physics news on Phys.org
The Pythagorean theorem applies only to right-triangles.
In this problem, ##x## and ##y## are not the legs of a right-triangle in space,
and neither are ##\dot x## and ##\dot y##.

The labels of the configuration coordinates are arbitrary.
Instead of the pair ##x## and ##y## (which is suggesting unrelated ideas),
use another pair (like ## c## and ## d##).By the way, I don't think Lagrange's Equations are considered "introductory physics" in this forum.
 
robphy said:
By the way, I don't think Lagrange's Equations are considered "introductory physics" in this forum.
So, is that Advanced Physics? 🤔
 
Istiakshovon said:
So, is that Advanced Physics? 🤔
Yeah, for me at least, problems involving the Lagrangian qualify for the Advanced Physics schoolwork forum.

UPDATE -- Thread moved. :smile:
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top