Find velocity with vector or without vector

Click For Summary
The discussion revolves around the confusion between vector and scalar representations of velocity in physics. The user initially equates velocity components in the x and y directions but struggles with the correct formulation of the overall velocity. It is clarified that the Pythagorean theorem applies only to right triangles, suggesting that the coordinates used may not represent a right triangle in space. The conversation also touches on the classification of Lagrange's Equations, indicating they are considered advanced rather than introductory physics. The thread was ultimately moved to a more appropriate forum for advanced topics.
Istiak
Messages
158
Reaction score
12
Homework Statement
Find velocity with vector or without vector
Relevant Equations
vector


At the moment he wrote that ##\frac{1}{2}mv_2^2=\frac{1}{2}m(-\dot{y}+\dot{x})^2##

But, I know from vector ##v_2=\sqrt{(-\dot{y})^2+(\dot{x})^2}##. At first I (he) found that ##v_2=-\dot{y}+\dot{x}##. But, when thinking of simple velocity in ##x## and ##y## coordinate then I get $$v^2=\dot{x}^2+\dot{y}^2$$ (I remember the equation from my last book). What am I taking wrong with the top (absolute top) equation?

In the equation, ##v_2=\sqrt{(-\dot{y})^2+(\dot{x})^2}## if I square both side than I get the equation which I gave above. So, can we write that ##v=\dot{x}+\dot{y}##. Then, if we square both side than that's simple algebraic expression. Maybe, this time I am mixing Algebra with Vector this time.
 
Physics news on Phys.org
The Pythagorean theorem applies only to right-triangles.
In this problem, ##x## and ##y## are not the legs of a right-triangle in space,
and neither are ##\dot x## and ##\dot y##.

The labels of the configuration coordinates are arbitrary.
Instead of the pair ##x## and ##y## (which is suggesting unrelated ideas),
use another pair (like ## c## and ## d##).By the way, I don't think Lagrange's Equations are considered "introductory physics" in this forum.
 
robphy said:
By the way, I don't think Lagrange's Equations are considered "introductory physics" in this forum.
So, is that Advanced Physics? 🤔
 
Istiakshovon said:
So, is that Advanced Physics? 🤔
Yeah, for me at least, problems involving the Lagrangian qualify for the Advanced Physics schoolwork forum.

UPDATE -- Thread moved. :smile:
 
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

Replies
0
Views
1K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
26
Views
5K
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
3K