Finding a rocket's speed at height h

  • Thread starter Thread starter meghanflowers
  • Start date Start date
  • Tags Tags
    Height Speed
AI Thread Summary
The discussion focuses on calculating a rocket's final speed at height h, starting from rest with thrust Fthrust. The initial approach incorrectly neglects gravitational acceleration, leading to an incomplete equation for net force. The correct formula should incorporate both thrust and gravitational force, as the rocket's acceleration is affected by gravity. Additionally, the change in mass of the rocket during ascent is not accounted for, which is crucial for accurate calculations. Overall, including gravitational acceleration and considering mass changes are essential for deriving the correct expression for the rocket's speed.
meghanflowers
Messages
1
Reaction score
0
Homework Statement
A rocket of mass m is launched straight up with thrust Fthrust.
Find an expression for the rocket's speed at height h if air resistance is neglected.
Express your answer in terms of the variables Fthrust , m , h , and appropriate constants.
Relevant Equations
vfs^2=vis^2+2Δs
a=F/m
I substituted 0 for vi, as the rocket is initially stopped.
I am looking for Vf.
So:
Vf^2=0+2asΔs
Vf^2=2asΔs

I then substituted a=Fthrust/m

So:
Vf^2=2(Fthrust/m)Δs
Δs at any given moment equals h so I substituted h for Δs.
Then took the square root of both sides.
Vf=sqrt(2h(Fthrust/m))

It says it is wrong, and that the correct answer includes the gravitational acceleration constant(g).
I am really stuck. Thanks for helping!
 
Physics news on Phys.org
Welcome to PF. :smile:

It does look like you have not included the downward force due to gravity in your net force equation. Can you try including it?

Also, see the LaTeX Guide link below the Edit window to learn how best to post math equations at PF. :smile:
 
meghanflowers said:
Homework Statement:: A rocket of mass m is launched straight up with thrust Fthrust.
Find an expression for the rocket's speed at height h if air resistance is neglected.
Express your answer in terms of the variables Fthrust , m , h , and appropriate constants.
Relevant Equations:: vfs^2=vis^2+2Δs
a=F/m

I substituted 0 for vi, as the rocket is initially stopped.
I am looking for Vf.
So:
Vf^2=0+2asΔs
Vf^2=2asΔs

I then substituted a=Fthrust/m

So:
Vf^2=2(Fthrust/m)Δs
Δs at any given moment equals h so I substituted h for Δs.
Then took the square root of both sides.
Vf=sqrt(2h(Fthrust/m))

It says it is wrong, and that the correct answer includes the gravitational acceleration constant(g).
I am really stuck. Thanks for helping!
Big hint: Start by sketching a Free Body Diagram of the rocket.

-Dan
 
This is also ignoring the change in mass of the rocket as it ascends.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top