Finding an open-cicuit voltage, why is resistor in series ignored?

  • Thread starter Thread starter justin___
  • Start date Start date
  • Tags Tags
    Resistor Series
AI Thread Summary
The discussion centers on understanding why a 30kOhm resistor in series is ignored when calculating open-circuit voltage, which is determined to be 200V. The key point is that because the circuit is open, no current flows through the resistor, resulting in no voltage drop across it. Consequently, the resistor does not affect the open-circuit voltage calculation. The clarification emphasizes the importance of current flow in determining voltage drop across resistors in series. This understanding is crucial for accurate circuit analysis.
justin___
Messages
2
Reaction score
2
Homework Statement
The circuit you should use to find the open-circuit voltage, voc, is shown here. Note that the resistor to the right of terminals a and b has been removed to create the open circuit. Using any circuit analysis technique you like, find the open-circuit voltage.
Relevant Equations
KCL
I found how to get the solution to this question (the answer is 200V), but I don't understand why we ignore the 30kOhm resistor when using analysing the circuit. Because it is in series with the open voltage, wouldn't there be some voltage drop across the resistor that would affect the open-circuit voltage?

1699058848969.png


Thanks
 
Physics news on Phys.org
Hint:
Can you write the equation for the voltage drop across a resistor given its value and the current thru it?

Upon inspection of that equation, the light bulb above your head will likely come on.

Cheers,
Tom
 
Tom.G said:
Hint:
Can you write the equation for the voltage drop across a resistor given its value and the current thru it?

Upon inspection of that equation, the light bulb above your head will likely come on.

Cheers,
Tom
Thanks for the hint. So because the 30kOhm resistor is in series with an open circuit, no current flows through it, therefore there is no voltage drop and we can ignore it from the equation?
 
  • Like
Likes Tom.G and DaveE
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top