Finding an open-cicuit voltage, why is resistor in series ignored?

  • Thread starter Thread starter justin___
  • Start date Start date
  • Tags Tags
    Resistor Series
AI Thread Summary
The discussion centers on understanding why a 30kOhm resistor in series is ignored when calculating open-circuit voltage, which is determined to be 200V. The key point is that because the circuit is open, no current flows through the resistor, resulting in no voltage drop across it. Consequently, the resistor does not affect the open-circuit voltage calculation. The clarification emphasizes the importance of current flow in determining voltage drop across resistors in series. This understanding is crucial for accurate circuit analysis.
justin___
Messages
2
Reaction score
2
Homework Statement
The circuit you should use to find the open-circuit voltage, voc, is shown here. Note that the resistor to the right of terminals a and b has been removed to create the open circuit. Using any circuit analysis technique you like, find the open-circuit voltage.
Relevant Equations
KCL
I found how to get the solution to this question (the answer is 200V), but I don't understand why we ignore the 30kOhm resistor when using analysing the circuit. Because it is in series with the open voltage, wouldn't there be some voltage drop across the resistor that would affect the open-circuit voltage?

1699058848969.png


Thanks
 
Physics news on Phys.org
Hint:
Can you write the equation for the voltage drop across a resistor given its value and the current thru it?

Upon inspection of that equation, the light bulb above your head will likely come on.

Cheers,
Tom
 
Tom.G said:
Hint:
Can you write the equation for the voltage drop across a resistor given its value and the current thru it?

Upon inspection of that equation, the light bulb above your head will likely come on.

Cheers,
Tom
Thanks for the hint. So because the 30kOhm resistor is in series with an open circuit, no current flows through it, therefore there is no voltage drop and we can ignore it from the equation?
 
  • Like
Likes Tom.G and DaveE
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top