Finding Area of Ring Segment to Find Electric Field of Disk

  • #1
Callumnc1
309
38
Homework Statement:
A disk of radius R has a uniform surface charge density s. Calculate the electric field at a point P that lies along the central perpendicular axis of the disk and a distance x from the center of the disk
Relevant Equations:
Continuous charge distribution formula
Hi!

For this problem,
1669922455444.png

Why is the area of each ring segment dA equal to (2π)(r)(dr)?

However, according to google the area of a ring segment (Annulus) is,
1669922629354.png


Many thanks!
 

Answers and Replies

  • #2
kuruman
Science Advisor
Homework Helper
Insights Author
Gold Member
12,596
5,745
Cut the thin ring and stretch it out. You get a rectangular strip of length ##2\pi r## and width ##dr##. What is its area?

The area of the annulus is indeed what google says. Note that
##R^2-r^2=(R+r)(R-r)##
For a thin ring ##R## and ##r## are very close to each other so that ##R-r=dr##. You can then approximate ##R+r\approx 2r## so that ##R^2-r^2\approx 2rdr##.
 
  • #3
Callumnc1
309
38
Cut the thin ring and stretch it out. You get a rectangular strip of length ##2\pi r## and width ##dr##. What is its area?
Thanks! So that is thought process that gives the area! However, why is that not equal to the area from the Annulus formula?

From the annulus formula I got A = (π)[(r + dr)^2 - r^2].

Many thanks!
 
  • #4
kuruman
Science Advisor
Homework Helper
Insights Author
Gold Member
12,596
5,745
Thanks! So that is thought process that gives the area! However, why is that not equal to the area from the Annulus formula?

From the annulus formula I got A = (π)[(r + dr)^2 - r^2].

Many thanks!
See my edited post.
 
  • #5
Callumnc1
309
38
See my edited post.
Thank you, I have written up and realized I had a new question:
1669924710925.png

What if we choose not to approximate? How would we integrate the infinitesimal (dr)^2 term?

Many thanks!
 
  • #6
erobz
Gold Member
1,482
660
Thank you, I have written up and realized I had a new question:
View attachment 318038
What if we choose not to approximate? How would we integrate the infinitesimal (dr)^2 term?

Many thanks!
Well, you will notice that if you integrate

$$\int dA = 2\pi \int_{r}^{R} r~dr $$

That it is exactly:

$$ A = \pi \left( R^2 - r^2 \right)$$

So the term ##(dr)^2## is not contributing anything. In the limit as ##dr \to 0 , 2 r ~dr ## is exact.
 
  • #7
Callumnc1
309
38
Well, you will notice that if you integrate

$$\int dA = 2\pi \int_{r}^{R} r~dr $$

That it is exactly:

$$ A = \pi \left( R^2 - r^2 \right)$$

So the term ##(dr)^2## is not contributing anything. In the limit as ##dr \to 0 , 2 r ~dr ## is exact.
Thanks for your reply!

I guess as dr approaches zero then (dr)^2 approach's zero a lot faster than 2r dr because it is squared.

However, just curious had would you integrate the (dr)^2 term anyway?

Many thanks!
 
  • #8
erobz
Gold Member
1,482
660
However, just curious had would you integrate the (dr)^2 term anyway?
I don't believe you ever would. It doesn't follow from the definition of the derivative.

$$ (A + \Delta A)- A = \pi \left[ \left( r + \Delta r \right)^2 - r^2\right] \implies \Delta A = \pi \left[ 2 r ~\Delta r + (\Delta r)^2 \right] $$

The derivative is given by:

$$ \frac{dA}{dr} = \lim_{ \Delta r \to 0 } \frac{\Delta A}{ \Delta r} = \lim_{ \Delta r \to 0 } \frac{ \pi \left[ 2 r ~\Delta r + (\Delta r)^2 \right] }{ \Delta r} = \lim_{ \Delta r \to 0 } \pi [ 2r + \cancel{ (\Delta r)}^0 ] = 2 \pi r $$

So if there are any first order ( or higher ) ##\Delta r ## terms left hanging around they vanish in the limit.
 
Last edited:
  • #9
Callumnc1
309
38
I don't believe you ever would. It doesn't follow from the definition of the derivative.

$$ (A + \Delta A)- A = \pi \left[ \left( r + \Delta r \right)^2 - r^2\right] \implies \Delta A = \pi \left[ 2 r ~\Delta r + (\Delta r)^2 \right] $$

The derivative is given by:

$$ \frac{dA}{dr} = \lim_{ \Delta r \to 0 } \frac{\Delta A}{ \Delta r} = \lim_{ \Delta r \to 0 } \frac{ \pi \left[ 2 r ~\Delta r + (\Delta r)^2 \right] }{ \Delta r} = \lim_{ \Delta r \to 0 } \pi [ 2r + \cancel{ (\Delta r)}^0 ] = 2 \pi r $$
Ok thank you erobz!
 
  • #10
nasu
Homework Helper
4,031
654
If you don't want to see these higher order terms in dr or ##\Delta r##, you can just start from the area of a circle, ##A(r)=\pi r^2## as a function of r. Then the change in the area when the radius increases by dr is the differential ##dA= (\frac{dA}{dr}) dr## = ##2\pi r dr##. This is the area of the ring added to the circle by a change in radius of dr so it is the area of a differential ring. You can use the same method to find the volume of a spherical shell by starting with the volume of a sphere.
 
  • #11
Callumnc1
309
38
If you don't want to see these higher order terms in dr or ##\Delta r##, you can just start from the area of a circle, ##A(r)=\pi r^2## as a function of r. Then the change in the area when the radius increases by dr is the differential ##dA= (\frac{dA}{dr}) dr## = ##2\pi r dr##. This is the area of the ring added to the circle by a change in radius of dr so it is the area of a differential ring. You can use the same method to find the volume of a spherical shell by starting with the volume of a sphere.
Thank you for sharing with me that really interesting method @nasu !
 

Suggested for: Finding Area of Ring Segment to Find Electric Field of Disk

Replies
28
Views
554
  • Last Post
Replies
11
Views
536
  • Last Post
Replies
2
Views
271
Replies
6
Views
232
  • Last Post
Replies
6
Views
479
  • Last Post
Replies
25
Views
281
Replies
3
Views
422
Replies
6
Views
437
  • Last Post
Replies
4
Views
370
  • Last Post
2
Replies
38
Views
1K
Top