MHB Finding domain of a trigonometric function

tmt1
Messages
230
Reaction score
0
I need to find the domain of this function:

$$f(x) = \frac{1+x}{ e^{cos(x)}}$$

I set $${ e^{cos(x)}}> 0$$

But I'm not sure what to do after this.
 
Mathematics news on Phys.org
tmt said:
I need to find the domain of this function:

$$f(x) = \frac{1+x}{ e^{cos(x)}}$$

I set $${ e^{cos(x)}}> 0$$

But I'm not sure what to do after this.

The top is obviously defined for all x.

The bottom, as you have established, is always positive. As both cos(x) and e^x are defined for all x, so is their composition.

So the top and bottom are defined for all x. The only place where the quotient of the two functions might not be defined is where the denominator is 0. But you already established that this doesn't happen anywhere.

So what is the domain of your function?
 
Prove It said:
The top is obviously defined for all x.

The bottom, as you have established, is always positive. As both cos(x) and e^x are defined for all x, so is their composition.

So the top and bottom are defined for all x. The only place where the quotient of the two functions might not be defined is where the denominator is 0. But you already established that this doesn't happen anywhere.

So what is the domain of your function?

All real numbers?
 
tmt said:
All real numbers?

Correct :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
5
Views
1K
Replies
28
Views
3K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
11
Views
2K
Replies
11
Views
2K
Back
Top