MHB Finding Formula without using any trig functions

AI Thread Summary
To find the formula for g(x) = sin(arccos(4x-1)) without using trigonometric functions, start by letting θ = arccos(4x-1). Using the right triangle definition, where the adjacent side is 4x-1 and the hypotenuse is 1, apply the Pythagorean theorem to find the opposite side as opp = √(1 - (4x-1)²). This leads to the expression g(x) = sin(θ) = opp/hyp = √(8x - 16x²). The discussion emphasizes the importance of considering the quadrant for the sine function, as the angle may not always be in the first quadrant, affecting the sign of the result.
khuangg
Messages
1
Reaction score
0
Find a formula for g(x)= sin(arccos(4x-1)) without using any trigonometric functions.

I have the answer key right in front of me, but i still get how to start it off or the steps in solving these kind of questions or how to do it at all :/

Thanks!
 
Mathematics news on Phys.org
:Hello, khuangg!

Find a formula for $\,g(x)\,=\, \sin\big[\arccos(4x-1)\big]$
without using any trigonometric functions.
Not sure what that means.
Let $\theta \,=\,\arccos(4x-1)$

Then:$\:\cos\theta \:=\:\dfrac{4x-1}{1} \:=\:\dfrac{adj}{hyp}$

$\theta$ is in a right triangle with: $\,adj= 4x-1,\; hyp = 1.$

Pythagorus: $\:\text{(opp)}^2 + \text{(adj)}^2 \;=\; \text{(hyp)}^2$
$\qquad\qquad \text{(opp)}^2 + (4x-1)^2 \;=\;1^2$

And we have: $\: opp = \sqrt{8x-16x^2}$

Therefore: $\:\sin\theta \;=\;\dfrac{opp}{hyp} \;=\;\sqrt{8x-16x^2}$

 
$$\theta = \arccos(4x-1) \implies \cos{\theta} = \frac{4x-1}{1}$$

$$g(x) = \sin{\theta} = \frac{y}{1} = \frac{\sqrt{1^2-(4x-1)^2}}{1} = \sqrt{8x-16x^2}$$
 
As beautiful as it is to draw up a right-angle triangle and apply Pythagoras, in cases like these I prefer to use the Pythagorean Identity, simply because it is quite possible that the angle given is not in the first quadrant, and so the signs may be off...

$\displaystyle \begin{align*} \sin{ \left[ \arccos{ \left( 4x - 1 \right) } \right] } &= \pm \sqrt{ 1 - \left\{ \cos{ \left[ \arccos{ \left( 4x - 1 \right) } \right] } \right\} ^2 } \\ &= \pm \sqrt{ 1 - \left( 4x - 1 \right) ^2 } \\ &= \pm \sqrt{ 1 - \left( 16x^2 - 8x + 1 \right) } \\ &= \pm \sqrt{ 8x - 16x^2 } \end{align*}$
 
Prove It said:
As beautiful as it is to draw up a right-angle triangle and apply Pythagoras, in cases like these I prefer to use the Pythagorean Identity, simply because it is quite possible that the angle given is not in the first quadrant, and so the signs may be off...

$\displaystyle \begin{align*} \sin{ \left[ \arccos{ \left( 4x - 1 \right) } \right] } &= \pm \sqrt{ 1 - \left\{ \cos{ \left[ \arccos{ \left( 4x - 1 \right) } \right] } \right\} ^2 } \\ &= \pm \sqrt{ 1 - \left( 4x - 1 \right) ^2 } \\ &= \pm \sqrt{ 1 - \left( 16x^2 - 8x + 1 \right) } \\ &= \pm \sqrt{ 8x - 16x^2 } \end{align*}$

... and in that case, g(x) would not be a function.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top