MHB Finding Formula without using any trig functions

Click For Summary
To find the formula for g(x) = sin(arccos(4x-1)) without using trigonometric functions, start by letting θ = arccos(4x-1). Using the right triangle definition, where the adjacent side is 4x-1 and the hypotenuse is 1, apply the Pythagorean theorem to find the opposite side as opp = √(1 - (4x-1)²). This leads to the expression g(x) = sin(θ) = opp/hyp = √(8x - 16x²). The discussion emphasizes the importance of considering the quadrant for the sine function, as the angle may not always be in the first quadrant, affecting the sign of the result.
khuangg
Messages
1
Reaction score
0
Find a formula for g(x)= sin(arccos(4x-1)) without using any trigonometric functions.

I have the answer key right in front of me, but i still get how to start it off or the steps in solving these kind of questions or how to do it at all :/

Thanks!
 
Mathematics news on Phys.org
:Hello, khuangg!

Find a formula for $\,g(x)\,=\, \sin\big[\arccos(4x-1)\big]$
without using any trigonometric functions.
Not sure what that means.
Let $\theta \,=\,\arccos(4x-1)$

Then:$\:\cos\theta \:=\:\dfrac{4x-1}{1} \:=\:\dfrac{adj}{hyp}$

$\theta$ is in a right triangle with: $\,adj= 4x-1,\; hyp = 1.$

Pythagorus: $\:\text{(opp)}^2 + \text{(adj)}^2 \;=\; \text{(hyp)}^2$
$\qquad\qquad \text{(opp)}^2 + (4x-1)^2 \;=\;1^2$

And we have: $\: opp = \sqrt{8x-16x^2}$

Therefore: $\:\sin\theta \;=\;\dfrac{opp}{hyp} \;=\;\sqrt{8x-16x^2}$

 
$$\theta = \arccos(4x-1) \implies \cos{\theta} = \frac{4x-1}{1}$$

$$g(x) = \sin{\theta} = \frac{y}{1} = \frac{\sqrt{1^2-(4x-1)^2}}{1} = \sqrt{8x-16x^2}$$
 
As beautiful as it is to draw up a right-angle triangle and apply Pythagoras, in cases like these I prefer to use the Pythagorean Identity, simply because it is quite possible that the angle given is not in the first quadrant, and so the signs may be off...

$\displaystyle \begin{align*} \sin{ \left[ \arccos{ \left( 4x - 1 \right) } \right] } &= \pm \sqrt{ 1 - \left\{ \cos{ \left[ \arccos{ \left( 4x - 1 \right) } \right] } \right\} ^2 } \\ &= \pm \sqrt{ 1 - \left( 4x - 1 \right) ^2 } \\ &= \pm \sqrt{ 1 - \left( 16x^2 - 8x + 1 \right) } \\ &= \pm \sqrt{ 8x - 16x^2 } \end{align*}$
 
Prove It said:
As beautiful as it is to draw up a right-angle triangle and apply Pythagoras, in cases like these I prefer to use the Pythagorean Identity, simply because it is quite possible that the angle given is not in the first quadrant, and so the signs may be off...

$\displaystyle \begin{align*} \sin{ \left[ \arccos{ \left( 4x - 1 \right) } \right] } &= \pm \sqrt{ 1 - \left\{ \cos{ \left[ \arccos{ \left( 4x - 1 \right) } \right] } \right\} ^2 } \\ &= \pm \sqrt{ 1 - \left( 4x - 1 \right) ^2 } \\ &= \pm \sqrt{ 1 - \left( 16x^2 - 8x + 1 \right) } \\ &= \pm \sqrt{ 8x - 16x^2 } \end{align*}$

... and in that case, g(x) would not be a function.
 

Similar threads

Replies
16
Views
2K
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K