A Finding Global Minima in Likelihood Functions

tworitdash
Messages
104
Reaction score
25
I have a likelihood function that has one global minima, but a lot of local ones too. I attach a figure with the likelihood function in 2D (it has two parameters). I have added a 3D view and a surface view of the likelihood function. I know there are many global optimizers that can be used to obtain the location of the global minimum point in the likelihood function. However, I want to know what basic optimizer principles that I can use (that I can also derive and implement myself) for a problem like this. If you see the 3D view, you may find many local minima. I am also open to suggestions that involve Bayesian type of optimization where I will get a posterior and not just a point estimate. I am open to that as well. I have tried MCMC type sampling optimization, however, they are computationally expensive. The number of parameters may increase later.
 

Attachments

  • cKJT2.png
    cKJT2.png
    19.1 KB · Views: 143
  • 5KeQE.png
    5KeQE.png
    29.2 KB · Views: 140
Mathematics news on Phys.org
Is it literally just this function you want to optimize?

You already did it, by drawing a graph. More formally if that's unsatisfying, for low dimensions and fast evaluation functions you can just evaluate the function at every point on a fine grid and pick the point with the best value. If you want a little extra precision you can run any optimizer from there to find the local extremum near that point.
 
  • Like
Likes WWGD and tworitdash
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top