A Finding Global Minima in Likelihood Functions

Click For Summary
The discussion focuses on optimizing a likelihood function with one global minimum and multiple local minima. The user seeks basic optimizer principles that can be derived and implemented independently, expressing interest in both traditional optimization methods and Bayesian approaches for obtaining posterior estimates. Suggestions include evaluating the function on a fine grid for low-dimensional cases to identify the best point, followed by using an optimizer to refine the search for local extrema. The user has also explored MCMC sampling but finds it computationally expensive, especially with potential increases in parameters. The conversation emphasizes the need for efficient optimization strategies in the context of complex likelihood functions.
tworitdash
Messages
104
Reaction score
25
I have a likelihood function that has one global minima, but a lot of local ones too. I attach a figure with the likelihood function in 2D (it has two parameters). I have added a 3D view and a surface view of the likelihood function. I know there are many global optimizers that can be used to obtain the location of the global minimum point in the likelihood function. However, I want to know what basic optimizer principles that I can use (that I can also derive and implement myself) for a problem like this. If you see the 3D view, you may find many local minima. I am also open to suggestions that involve Bayesian type of optimization where I will get a posterior and not just a point estimate. I am open to that as well. I have tried MCMC type sampling optimization, however, they are computationally expensive. The number of parameters may increase later.
 

Attachments

  • cKJT2.png
    cKJT2.png
    19.1 KB · Views: 149
  • 5KeQE.png
    5KeQE.png
    29.2 KB · Views: 142
Mathematics news on Phys.org
Is it literally just this function you want to optimize?

You already did it, by drawing a graph. More formally if that's unsatisfying, for low dimensions and fast evaluation functions you can just evaluate the function at every point on a fine grid and pick the point with the best value. If you want a little extra precision you can run any optimizer from there to find the local extremum near that point.
 
  • Like
Likes WWGD and tworitdash

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
0
Views
920
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K