I Finding intersection of two algebraic curves

Click For Summary
Finding intersections of two algebraic curves, particularly for higher degrees, poses significant challenges. While brute force methods work for low-degree curves, a more general numeric approach is sought for degrees like 10 or 12. The Abel-Ruffini theorem indicates that quintic equations lack solutions expressed in radicals, complicating the search for intersections. The resultant of the two polynomials is suggested as a potential method, but its application for computing intersections of real and imaginary sheets remains unclear. A systematic approach for higher-degree cases is still needed to effectively find these intersections.
aheight
Messages
318
Reaction score
108
TL;DR
Is there a standard numeric approach to finding the intersection of two algebraic curves?
Given two algebraic curves:

##f_1(z,w)=a_0(z)+a_1(z)w+\cdots+a_n(z)w^n=0##
##f_2(z,w)=b_0(z)+b_1(z)w+\cdots+b_k(z)w^k=0##

Is there a general, numeric approach to finding where the first curve ##w_1(z)## intersects the second curve ##w_2(z)##? I know for low degree like quadratic or cubics can find the intersection by brute force but was wondering if there is a more general approach for higher degrees say 10 or 12 each?
 
Mathematics news on Phys.org
Not expressed with radicals, at least.
If there would be then quintic equations would have such a solution. They do not in general: Abel-Ruffini theorem
 
mfb said:
Not expressed with radicals, at least.
If there would be then quintic equations would have such a solution. They do not in general: Abel-Ruffini theorem

It appears to be a difficult problem even numerically. Was just wondering how others might approach it (numerically).
 
@aheight -- You should look at the resultant of the two polynomials. See the Resultant - Wikipedia article for more information, especially the section on Algebraic Geometry. HTH
 
Petek said:
@aheight -- You should look at the resultant of the two polynomials. See the Resultant - Wikipedia article for more information, especially the section on Algebraic Geometry. HTH
Thanks for that. However, perhaps I should have stated above I'm interested in computing the intersections of the real and imaginary sheets of both algebraic curves. Consider a simple case I'm working on:

$$
\begin{align*}
f1(z,w)&=(-6z/5-2z^2+z^4)+(2/5-2 z^2/5)w+1/25 w^2=0\\
f2(z,w)&=(-1+z^2)-6/5 w=0
\end{align*}
$$
If I plot the real sheets of ##w_1## from f1 as the yellow and red surfaces and the real sheet of ##w_2## from f2 as the orange surface in the plot below, I obtain their intersections as the white curves. The white curves I computed by solving simple simultaneous equations for this simple case which I would not be able to do with higher degree curves and was wondering if there is a systematic way to find the intersections for the higher degree cases.

Guess I mean I don't see how the resultant can be used to find the white curves.
intersectionPlot.jpg
 
Last edited:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K