MHB Finding lines through given point perpendicular and parallel to given line

AI Thread Summary
To find the equations of lines parallel and perpendicular to y = 2x + 3 that pass through the point (1, 1), the point-slope form is used. The parallel line shares the same slope of 2, resulting in the equation y - 1 = 2(x - 1). For the perpendicular line, the slope is the opposite reciprocal, -1/2, leading to the equation y - 1 = -1/2(x - 1). The discussion emphasizes the correct categorization of the topic within Pre-algebra and Algebra rather than Linear and Abstract algebra. Understanding these concepts is essential for solving similar problems.
swag312
Messages
6
Reaction score
0
Hey, not sure how to translate this from my native language, I hope you understand what I mean.

Write down for the line
y = 2x + 3 perpendicular and parallel lines passing through the point
(1; 1) equations.
 
Mathematics news on Phys.org
swag312 said:
Hey, not sure how to translate this from my native language, I hope you understand what I mean.

Write down for the line
y = 2x + 3 perpendicular and parallel lines passing through the point
(1; 1) equations.

using the point-slope form, $y-y_1 = m(x-x_1)$

parallel lines have the same slope ...

$y-1 = 2(x-1)$

perpendicular lines have slopes that are opposite reciprocals ...

$y - 1 = -\dfrac{1}{2}(x-1)$

... and this post belongs in Pre-algebra and Algebra, not Linear and Abstract algebra
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top