Petrus
- 702
- 0
Decide max and min value for
$$f(x,y)=x^2+y^2+2x-2y+2$$ where $$x^2+y^2 \leq1$$
progress:
for solving that equation $$f_x(x,y), f_y(x,y)$$ we get the point $$(1,-1)$$
if we do parametric $$x= \cos(t) \, y= \sin(y)$$ where $$0\leq t \leq 2\pi$$
if we put those value and simplify and derivate we get
$$-2\sin(t)-2\cos(t)=0 <=> 1=-\tan(t)$$
that means its on second and 4th quadrants
do I take $$ -tan^{-1}$$ now?
and get now got $$-tan^{-1}(t)$$
so we got $$x=\cos(-\tan^{1}(1)) <=> t=\frac{1}{2}$$, $$x=\sin(-\tan^{1}(1)) <=> t=\frac{1}{2}$$
is this correct?
so we got $$(-\frac{1}{2},\frac{1}{2})$$ and $$(\frac{1}{2},-\frac{1}{2})$$
Regards,
$$|\pi\rangle$$
$$f(x,y)=x^2+y^2+2x-2y+2$$ where $$x^2+y^2 \leq1$$
progress:
for solving that equation $$f_x(x,y), f_y(x,y)$$ we get the point $$(1,-1)$$
if we do parametric $$x= \cos(t) \, y= \sin(y)$$ where $$0\leq t \leq 2\pi$$
if we put those value and simplify and derivate we get
$$-2\sin(t)-2\cos(t)=0 <=> 1=-\tan(t)$$
that means its on second and 4th quadrants
do I take $$ -tan^{-1}$$ now?
and get now got $$-tan^{-1}(t)$$
so we got $$x=\cos(-\tan^{1}(1)) <=> t=\frac{1}{2}$$, $$x=\sin(-\tan^{1}(1)) <=> t=\frac{1}{2}$$
is this correct?
so we got $$(-\frac{1}{2},\frac{1}{2})$$ and $$(\frac{1}{2},-\frac{1}{2})$$
Regards,
$$|\pi\rangle$$
Last edited: