I Finding Momentum Mean & Variance from Wavefunction

Click For Summary
The discussion focuses on calculating the mean momentum (⟨p⟩) and momentum uncertainty (Δp) from a Gaussian momentum space wavefunction. The participants explore the use of the Schrödinger equation in momentum space, noting that the momentum distribution remains unchanged over time. They emphasize the necessity of working with integrals and Fourier transforms to derive these quantities. A solution is provided, indicating that the time-dependent wavefunction can be expressed in terms of the initial momentum wavefunction. The conversation concludes with an affirmation of the momentum space approach to solving the problem.
Kashmir
Messages
466
Reaction score
74
I've a Gaussian momentum space wavefunction as ##\phi(p)=\left(\frac{1}{2 \pi \beta^{2}}\right)^{1 / 4} e^{-\left(p-p_{0}\right)^{2} / 4 \beta^{2}}##

So that ##|\phi(p)|^{2}=\frac{e^{-\left(p-p_{0}\right)^{2} / 2 \beta^{2}}}{\beta \sqrt{2 \pi}}##

Also then ##\psi(x, t)=\frac{1}{\sqrt{2 \pi {\hbar}}} \int_{-\infty}^{} \phi(p) e^{i px/ {\hbar} } e^{-i p^{2} t / 2 m
{\hbar} } d p##

hence ##\phi(p, t)=\frac{1}{\sqrt{2 \pi h}} \int_{}^{} \psi(x, t) e^{-i px / {\hbar} } d x##I want to find ##\langle p\rangle## and ##\Delta p## at any time ##t##. I can use the momentum or position wavefunction to do that, however I'm getting large number of integrals.

Is there any quicker way to find them in this case?
 
Physics news on Phys.org
Kashmir said:
Is there any quicker way to find them in this case?
Probably not. In any case, you have to learn to work with these integrals and Fourier transforms.

If you work in momentum space, then you need the momentum-space version of the SDE to get the time-dependent wave-function. Perhaps that is simplest?
 
PeroK said:
Probably not. In any case, you have to learn to work with these integrals and Fourier transforms.

If you work in momentum space, then you need the momentum-space version of the SDE to get the time-dependent wave-function. Perhaps that is simplest?
Thank you. :)
 
But you have the solution in momentum space. Since ##\hat{H}=\hat{p}^2/(2m)## in momentum space the Schrödinger equation reads
$$\mathrm{i} \hbar \partial_t \phi(p,t)=\frac{p^2}{2m} \phi(p,t)$$
with the solution
$$\phi(p,t)=\exp \left (-\frac{\mathrm{i} p^2 t}{2m \hbar} \right) \phi_0(p).$$
Correspondingly the momentum distribution doesn't change,
$$|\phi(p,t)|^2=|\phi_0(p)|^2.$$
 
vanhees71 said:
But you have the solution in momentum space. Since ##\hat{H}=\hat{p}^2/(2m)## in momentum space the Schrödinger equation reads
$$\mathrm{i} \hbar \partial_t \phi(p,t)=\frac{p^2}{2m} \phi(p,t)$$
with the solution
$$\phi(p,t)=\exp \left (-\frac{\mathrm{i} p^2 t}{2m \hbar} \right) \phi_0(p).$$
Correspondingly the momentum distribution doesn't change,
$$|\phi(p,t)|^2=|\phi_0(p)|^2.$$
I've not done Schrodinger equation in momentum space but this is my attempt. If it's wrong please tell me:

By operation of a momentum bra on first equation we've the second one

##\begin{aligned} i \hbar \frac{d}{d t}|\psi\rangle &=\frac{1}{2 m} \hat{p}^{2}|\psi\rangle \\ i{\hbar} \frac{d}{d t} \phi(p, t) &=\frac{1}{2 m}\left\langle p\left|\hat{p}^{2}\right| \psi\right\rangle \end{aligned}##Now ##\langle p|\hat{p} \cdot \hat{p}| \psi\rangle## can be evaluated by noting that ##p<p \mid=\langle p| \hat{p}##

So We get ##i \hbar \frac{d}{d t} \phi(p ,t)=(p^{2}/2m). \phi(p,t)##
 
  • Like
Likes vanhees71 and PeroK
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...