I Finding Momentum Mean & Variance from Wavefunction

Kashmir
Messages
466
Reaction score
74
I've a Gaussian momentum space wavefunction as ##\phi(p)=\left(\frac{1}{2 \pi \beta^{2}}\right)^{1 / 4} e^{-\left(p-p_{0}\right)^{2} / 4 \beta^{2}}##

So that ##|\phi(p)|^{2}=\frac{e^{-\left(p-p_{0}\right)^{2} / 2 \beta^{2}}}{\beta \sqrt{2 \pi}}##

Also then ##\psi(x, t)=\frac{1}{\sqrt{2 \pi {\hbar}}} \int_{-\infty}^{} \phi(p) e^{i px/ {\hbar} } e^{-i p^{2} t / 2 m
{\hbar} } d p##

hence ##\phi(p, t)=\frac{1}{\sqrt{2 \pi h}} \int_{}^{} \psi(x, t) e^{-i px / {\hbar} } d x##I want to find ##\langle p\rangle## and ##\Delta p## at any time ##t##. I can use the momentum or position wavefunction to do that, however I'm getting large number of integrals.

Is there any quicker way to find them in this case?
 
Physics news on Phys.org
Kashmir said:
Is there any quicker way to find them in this case?
Probably not. In any case, you have to learn to work with these integrals and Fourier transforms.

If you work in momentum space, then you need the momentum-space version of the SDE to get the time-dependent wave-function. Perhaps that is simplest?
 
PeroK said:
Probably not. In any case, you have to learn to work with these integrals and Fourier transforms.

If you work in momentum space, then you need the momentum-space version of the SDE to get the time-dependent wave-function. Perhaps that is simplest?
Thank you. :)
 
But you have the solution in momentum space. Since ##\hat{H}=\hat{p}^2/(2m)## in momentum space the Schrödinger equation reads
$$\mathrm{i} \hbar \partial_t \phi(p,t)=\frac{p^2}{2m} \phi(p,t)$$
with the solution
$$\phi(p,t)=\exp \left (-\frac{\mathrm{i} p^2 t}{2m \hbar} \right) \phi_0(p).$$
Correspondingly the momentum distribution doesn't change,
$$|\phi(p,t)|^2=|\phi_0(p)|^2.$$
 
vanhees71 said:
But you have the solution in momentum space. Since ##\hat{H}=\hat{p}^2/(2m)## in momentum space the Schrödinger equation reads
$$\mathrm{i} \hbar \partial_t \phi(p,t)=\frac{p^2}{2m} \phi(p,t)$$
with the solution
$$\phi(p,t)=\exp \left (-\frac{\mathrm{i} p^2 t}{2m \hbar} \right) \phi_0(p).$$
Correspondingly the momentum distribution doesn't change,
$$|\phi(p,t)|^2=|\phi_0(p)|^2.$$
I've not done Schrodinger equation in momentum space but this is my attempt. If it's wrong please tell me:

By operation of a momentum bra on first equation we've the second one

##\begin{aligned} i \hbar \frac{d}{d t}|\psi\rangle &=\frac{1}{2 m} \hat{p}^{2}|\psi\rangle \\ i{\hbar} \frac{d}{d t} \phi(p, t) &=\frac{1}{2 m}\left\langle p\left|\hat{p}^{2}\right| \psi\right\rangle \end{aligned}##Now ##\langle p|\hat{p} \cdot \hat{p}| \psi\rangle## can be evaluated by noting that ##p<p \mid=\langle p| \hat{p}##

So We get ##i \hbar \frac{d}{d t} \phi(p ,t)=(p^{2}/2m). \phi(p,t)##
 
  • Like
Likes vanhees71 and PeroK
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top