Finding Momentum Mean & Variance from Wavefunction

Click For Summary
SUMMARY

This discussion focuses on calculating the momentum mean and variance from a Gaussian momentum space wavefunction, specifically defined as ##\phi(p)=\left(\frac{1}{2 \pi \beta^{2}}\right)^{1 / 4} e^{-\left(p-p_{0}\right)^{2} / 4 \beta^{2}}##. The participants explore the use of the Schrödinger equation in momentum space, represented as ##\mathrm{i} \hbar \partial_t \phi(p,t)=\frac{p^2}{2m} \phi(p,t)##, and confirm that the momentum distribution remains unchanged over time. The discussion emphasizes the necessity of mastering integrals and Fourier transforms to derive the expected momentum ##\langle p\rangle## and uncertainty ##\Delta p##.

PREREQUISITES
  • Understanding of Gaussian wavefunctions in quantum mechanics
  • Familiarity with the Schrödinger equation in momentum space
  • Knowledge of Fourier transforms and their applications in quantum mechanics
  • Basic concepts of quantum mechanics, including operators and expectation values
NEXT STEPS
  • Study the derivation of the momentum-space Schrödinger equation
  • Learn about the properties of Gaussian wavefunctions and their implications in quantum mechanics
  • Explore techniques for calculating expectation values and uncertainties in quantum systems
  • Investigate advanced topics in Fourier transforms relevant to quantum mechanics
USEFUL FOR

Quantum physicists, students of quantum mechanics, and researchers working on wavefunction analysis and momentum space calculations will benefit from this discussion.

Kashmir
Messages
466
Reaction score
74
I've a Gaussian momentum space wavefunction as ##\phi(p)=\left(\frac{1}{2 \pi \beta^{2}}\right)^{1 / 4} e^{-\left(p-p_{0}\right)^{2} / 4 \beta^{2}}##

So that ##|\phi(p)|^{2}=\frac{e^{-\left(p-p_{0}\right)^{2} / 2 \beta^{2}}}{\beta \sqrt{2 \pi}}##

Also then ##\psi(x, t)=\frac{1}{\sqrt{2 \pi {\hbar}}} \int_{-\infty}^{} \phi(p) e^{i px/ {\hbar} } e^{-i p^{2} t / 2 m
{\hbar} } d p##

hence ##\phi(p, t)=\frac{1}{\sqrt{2 \pi h}} \int_{}^{} \psi(x, t) e^{-i px / {\hbar} } d x##I want to find ##\langle p\rangle## and ##\Delta p## at any time ##t##. I can use the momentum or position wavefunction to do that, however I'm getting large number of integrals.

Is there any quicker way to find them in this case?
 
Physics news on Phys.org
Kashmir said:
Is there any quicker way to find them in this case?
Probably not. In any case, you have to learn to work with these integrals and Fourier transforms.

If you work in momentum space, then you need the momentum-space version of the SDE to get the time-dependent wave-function. Perhaps that is simplest?
 
  • Like
Likes   Reactions: Kashmir
PeroK said:
Probably not. In any case, you have to learn to work with these integrals and Fourier transforms.

If you work in momentum space, then you need the momentum-space version of the SDE to get the time-dependent wave-function. Perhaps that is simplest?
Thank you. :)
 
But you have the solution in momentum space. Since ##\hat{H}=\hat{p}^2/(2m)## in momentum space the Schrödinger equation reads
$$\mathrm{i} \hbar \partial_t \phi(p,t)=\frac{p^2}{2m} \phi(p,t)$$
with the solution
$$\phi(p,t)=\exp \left (-\frac{\mathrm{i} p^2 t}{2m \hbar} \right) \phi_0(p).$$
Correspondingly the momentum distribution doesn't change,
$$|\phi(p,t)|^2=|\phi_0(p)|^2.$$
 
  • Informative
Likes   Reactions: Kashmir
vanhees71 said:
But you have the solution in momentum space. Since ##\hat{H}=\hat{p}^2/(2m)## in momentum space the Schrödinger equation reads
$$\mathrm{i} \hbar \partial_t \phi(p,t)=\frac{p^2}{2m} \phi(p,t)$$
with the solution
$$\phi(p,t)=\exp \left (-\frac{\mathrm{i} p^2 t}{2m \hbar} \right) \phi_0(p).$$
Correspondingly the momentum distribution doesn't change,
$$|\phi(p,t)|^2=|\phi_0(p)|^2.$$
I've not done Schrödinger equation in momentum space but this is my attempt. If it's wrong please tell me:

By operation of a momentum bra on first equation we've the second one

##\begin{aligned} i \hbar \frac{d}{d t}|\psi\rangle &=\frac{1}{2 m} \hat{p}^{2}|\psi\rangle \\ i{\hbar} \frac{d}{d t} \phi(p, t) &=\frac{1}{2 m}\left\langle p\left|\hat{p}^{2}\right| \psi\right\rangle \end{aligned}##Now ##\langle p|\hat{p} \cdot \hat{p}| \psi\rangle## can be evaluated by noting that ##p<p \mid=\langle p| \hat{p}##

So We get ##i \hbar \frac{d}{d t} \phi(p ,t)=(p^{2}/2m). \phi(p,t)##
 
  • Like
Likes   Reactions: vanhees71 and PeroK

Similar threads

  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 56 ·
2
Replies
56
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K