Finding potential given some conditions

Click For Summary
The discussion revolves around finding the potential V(x) for a 1D quantum system given the ground state and first excited state wave functions. It is established that the first excited state can be expressed as ##\psi_{1}(x) = x \psi_{0}(x)##, leading to the derivation of V(x) through the time-independent Schrödinger equation (TISE). The resulting potential is identified as a harmonic oscillator potential, specifically $$V(x) = \frac{m}{2}\frac{(E_1-E_2)^2}{\hbar^2}x^2$$, indicating a relationship between energy differences and the potential form. The discussion also contrasts this potential with another case involving a potential step, highlighting that different systems yield different potentials and wavefunctions. Overall, the analysis confirms the consistency of the harmonic oscillator model in this context.
CAF123
Gold Member
Messages
2,918
Reaction score
87

Homework Statement


Denote the ground state and the first excited state of a 1D quantum system by ##\psi_{0}## and ##\psi_{1}##. If it is given that $$\psi_{1}(x) = x \psi_{0}(x)\,\,\,\text{and}\,\,V(0)=0$$ find the potential V(x).

Homework Equations


TISE

The Attempt at a Solution


If I sub ##\psi_1## into the TISE I get ##-\frac{\hbar^2}{2m} \psi_1'' + V(x)\psi_1 = E_1 \psi_1##(1). I can replace ##\psi_1## with ##x\psi_o## to give after differentiation, ##-\frac{\hbar^2}{2m} \left(2\psi_o' + x\psi_o''\right) + V(x)x\psi_o = E_1x\psi_o##. (2)

But I also know that ##-\frac{\hbar^2}{2m} \psi_0'' + V(x)\psi_0 = E_2\psi_0## Rearrange (2) yields $$-\frac{\hbar^2}{m}\psi_o' + x\left(-\frac{\hbar^2}{2m}\psi_o'' + V(x)\psi_o)\right) = E_1x\psi_o.$$The coefficient of x is precisely ##E_2\psi_o## so I end up with a diff eq for ##\psi_o##: $$\psi_o' = -\frac{m(E_2 - E_1)}{\hbar^2}x\psi_0 \Rightarrow \psi_o = K \exp\left(-\frac{m(E_1-E_2)}{\hbar^2} \frac{x^2}{2}\right)$$, K a constant.

So it then easy to get ##\psi_1## by multiplying ##\psi_o## by x. Subbing ##\psi_1## back into (1) and differentiating twice I get that $$V(x) = \frac{m}{2}\frac{(E_1-E_2)^2}{\hbar^2}x^2$$, neglecting the constant terms. Does this seem okay?
 
Last edited:
Physics news on Phys.org
Looks good. It's the harmonic oscillator with the frequency
\omega^2=\frac{(E_1-E_2)^2}{\hbar^2}
as it should be.
 
Hi vanhees71, I was wondering how the answer I got here differs from the potential in my other thread '1D Potential Step QM Problem'. Is it just the case that in that thread V was the harmonic oscillator to a restricted interval, whereas in this case it holds for all x? Hence the potentials in both threads are different.
 
eh? In the 1D potential step problem, I'm guessing the potential was simply a step potential. But here you have a completely different potential. different potential gives a different wavefunction.

edit: ah whoops, I didn't read your post carefully enough. OK so in your other thread, the potential was like a harmonic oscillator potential over some interval and some larger constant outside that interval? Well, still that potential is different to this potential, as you say, which is why you get different answers. In other words, different system, different answer.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K