Finding Propagation of Uncertainty?

Click For Summary
The discussion centers on calculating the propagation of uncertainty for the density of a cylinder based on measurements of mass, length, and diameter. The user initially calculates the uncertainty but receives an incorrect grade from the online system. It is clarified that the user needs to multiply the square root of the summed squared uncertainties by the calculated density value. The exponents in the uncertainty formula correspond to the variables' roles in the density calculation. Ultimately, applying this correction resolves the grading issue with the online system.
Monkey618
Messages
7
Reaction score
0
You measure the mass of the cylinder to be m = 584.9 +- 0.5 grams, and you measure the length of the cylinder to be L = 18.195 +- 0.003 cm. Just like in the lab you performed, you now measure the diameter in eight different places and obtain the following results.
Diameter (cm)
2.125
2.090
2.065
2.240
2.110
2.100
2.080
2.240

This gives an average of 2.131 +- 0.0695

This makes the density = 9.01 g/cm^3 +- propagation of uncertainty

Trying to calculate this, I have: sqrt( ((1*0.5) / 584.9)^2 + ((-2 * 0,0695) / 2.131)^2 + ((-1 * 0.003) / 18.195)^2 ) = 0.0652

However the online grading system say's that I'm wrong. So where have I gone wrong with the uncertainty of the density. All of the other values have been graded and marked correct, so where did I mess up with the uncertainty.

I'm not really clear where the "1", "-2", or "-1" came from in the formula above, I was basing it on my notes from class.
 
Physics news on Phys.org
Monkey618 said:
You measure the mass of the cylinder to be m = 584.9 +- 0.5 grams, and you measure the length of the cylinder to be L = 18.195 +- 0.003 cm. Just like in the lab you performed, you now measure the diameter in eight different places and obtain the following results.
Diameter (cm)
2.125
2.090
2.065
2.240
2.110
2.100
2.080
2.240

This gives an average of 2.131 +- 0.0695

This makes the density = 9.01 g/cm^3 +- propagation of uncertainty

Trying to calculate this, I have: sqrt( ((1*0.5) / 584.9)^2 + ((-2 * 0,0695) / 2.131)^2 + ((-1 * 0.003) / 18.195)^2 ) = 0.0652

However the online grading system say's that I'm wrong. So where have I gone wrong with the uncertainty of the density. All of the other values have been graded and marked correct, so where did I mess up with the uncertainty.
It looks like you forgot to multiply the "sqrt" by the calculated value of the function being evaluated (the density value).
I'm not really clear where the "1", "-2", or "-1" came from in the formula above, I was basing it on my notes from class.
They are values that depend upon the exponent of the variable in the function. Write out the function being evaluated in one line (promote the variables in the denominator to the numerator and adjust exponents accordingly):

$$f(m,d,L) = \frac{4}{\pi}M^1 d^{-2} L^{-1}$$

You can pick out the values as the exponents of the variables. Thus, for example, the value "-2" is associated with the diameter variable d.
 
You calculated the relative uncertainty, and both the formula and the result look good. Similar to gneill, I think the online grading system wants the absolute uncertainty.
 
I've been meaning to get back here to say Thank You! Multiplying by the density was exactly what I needed to do for WebAssign (the online grading system) to accept the answer.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
15
Views
3K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
7K
Replies
3
Views
11K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
5K