MHB Finding Surface Area from Equation in Terms of x=g(y)

Click For Summary
To find the surface area when given an equation in the form x=g(y) about the x-axis, it is not necessary to solve for y; integration can be performed directly in terms of y. The derivative dx/dy is used in the calculations, which is appropriate for this method. The provided calculations for the surface area, involving the integral from 1 to 3 of 2πy√(1+y²(y²+2))dy, are accurate. The final result of the surface area is confirmed to be 48π. This approach effectively demonstrates the correct application of integration techniques for surface area calculations.
ineedhelpnow
Messages
649
Reaction score
0
if I am finding the surface area, and I am given the equation in term of x=g(y) about the x-axis, do i have to solve for y or can i just integrate in terms of y? would i just use dx/dy instead?
 
Physics news on Phys.org
that's how i did the problem:

$x=\frac{1}{3} (y^2+2)^{3/2}$ $1\le y \le 3$ about the x axis
$x'= \frac{(y^2+2)^{3/2}}{3} = \frac{ \frac{3(y^2+2)^{1/2}}{2}}{3}dy(y^2+2 ) = \frac{(y^2+2)^{1/2}*2y}{2} = y \sqrt{y^2+2}$

$S=\int_{1}^{3} \ 2\pi y \sqrt{1+y^2(y^2+2)}dy=2\pi \int_{1}^{3} \ y\sqrt{1+y^4+2y^2}dy=2\pi\int_{1}^{3} \ y\sqrt{(y^2+1)^2}dy=2\pi \int_{1}^{3} \ y(y^2+1)dy=2\pi \int_{1}^{3} \ (y^3+y) dy=2\pi [\frac{y^4}{4}+\frac{y^2}{2}]_{1}^{3} = 48 \pi$

is it correct?
 
Last edited:
ineedhelpnow said:
that's how i did the problem:

$x=\frac{1}{3} (y^2+2)^{3/2}$ $1\le y \le 3$ about the x axis
$x'= \frac{(y^2+2)^{3/2}}{3} = \frac{ \frac{3(y^2+2)^{1/2}}{2}}{3}dy(y^2+2 ) = \frac{(y^2+2)^{1/2}*2y}{2} = y \sqrt{y^2+2}$

$S=\int_{1}^{3} \ 2\pi y \sqrt{1+y^2(y^2+2)}dy=2\pi \int_{1}^{3} \ y\sqrt{1+y^4+2y^2}dy=2\pi\int_{1}^{3} \ y\sqrt{(y^2+1)^2}dy=2\pi \int_{1}^{3} \ y(y^2+1)dy=2\pi \int_{1}^{3} \ (y^3+y) dy=2\pi [\frac{y^4}{4}+\frac{y^2}{2}]_{1}^{3} = 48 \pi$

is it correct?

It is correct! (Yes)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K