MHB Finding Temperature of Hot Sandwich: Equation & Answers

  • Thread starter Thread starter arroww
  • Start date Start date
  • Tags Tags
    Temperature
arroww
Messages
16
Reaction score
0
9) A student records the internal temperature of a hot sandwich that has been left to cool on a kitchen counter. The room temperature is 19 degrees Celsius. An equation that models this situation is $$T(t) = 63(0.5)^\frac{t}{10} + 19$$ where $$T$$ is the temperature in degrees Celsius and $$t$$ is the time in minutes.

a) What was the temperature of the sandwich when she began to record its temperature?
b) Determine the temperature of the sandwich after 20 min.I don't really understand what to do..help would be appreciated. Thanks!
 
Mathematics news on Phys.org
The equation you are given tells you the temperature of the sandwich at time $t$. So, you need to substitute for $t$ and then evaluate the resulting expression on the right side of the equation. What is the value of $t$ for part a)? And for part b)?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top