MHB Finding the Coefficient in a Power Series Sum

Click For Summary
The discussion revolves around finding the nth derivative of the function f(z) = e^{\alpha Ln(z+1)} and expressing it in a power series form. The user initially derives that f(z) simplifies to (z+1)^{\alpha}, leading to the derivatives f^1(z), f^2(z), and f^3(z) correctly. However, confusion arises regarding the coefficients in the nth derivative, particularly when n=1, where the expected coefficient is $\alpha$, but the answer includes $(\alpha-1)$. The conversation also touches on the differences in logarithmic properties when dealing with complex versus real numbers, emphasizing that the logarithm laws do not apply uniformly across these domains. The user seeks clarification on how to properly derive and express these coefficients in the context of complex variables.
aruwin
Messages
204
Reaction score
0
Hi.
I have another question about power series. I am having problem with the summarizing of the sum (writing in $\sum_{}^{}$ form).

Here is the question:
Let $\alpha$ be a real number that is not 0.
Let $f(z)=e^{{\alpha}Ln(z+1)}$
For integer n>0, find $f^n(0)$. My partial solution:
$f(z)=e^{{\alpha}Ln(z+1)}$$=(z+1)^{\alpha}$

$$f^1(z)=\alpha(z+1)^{\alpha-1}$$

$$f^2(z)=\alpha(\alpha-1)(z+1)^{\alpha-2}$$

$$f^3(z)=\alpha(\alpha-1)(\alpha-2)(z+1)^{\alpha-3}$$

In the answer, $f^n(z) = \alpha(\alpha-1)...(\alpha-n+1)(z+1)^{\alpha-n}$.

I am confused because when n=1,
$$f^1(z)=\alpha(z+1)^{\alpha-1}$$
but in the answer, there is the coefficient $(\alpha-1)$, this is where I am confused.
 
Last edited:
Physics news on Phys.org
aruwin said:
Hi.
I have another question about power series. I am having problem with the summarizing of the sum (writing in $\sum_{}^{}$ form).

Here is the question:
Let $\alpha$ be a real number that is not 0.
Let $f(z)=e^{{\alpha}Ln(z+1)}$
For integer n>0, find $f^n(0)$. My partial solution:
$f(z)=e^{{\alpha}Ln(z+1)}$$=(z+1)^{\alpha}$

$$f^1(z)=\alpha(z+1)^{\alpha-1}$$

$$f^2(z)=\alpha(\alpha-1)(z+1)^{\alpha-2}$$

$$f^3(z)=\alpha(\alpha-1)(\alpha-2)(z+1)^{\alpha-3}$$

The answer for $f^n(z)$ is
$$\alpha(\alpha-1)...(\alpha-n+1)(z+1)^{\alpha-n}$$.

I am confused because if the above answer is $f^n(z)$,
then when n=1,
$$f^1(z)=\alpha(z+1)^{\alpha-1}$$
but in the answer, there is the coefficient $(\alpha-1)$, this is where I am confused.

If z is not a real number, $\displaystyle \begin{align*} \mathrm{e}^{\alpha \, \mathrm{Ln}\,\left( z + 1 \right) } \neq \left( z + 1 \right) ^{\alpha } \end{align*}$ as the logarithm laws in general do not carry from the real numbers to the complex numbers...
 
Prove It said:
If z is not a real number, $\displaystyle \begin{align*} \mathrm{e}^{\alpha \, \mathrm{Ln}\,\left( z + 1 \right) } \neq \left( z + 1 \right) ^{\alpha } \end{align*}$ as the logarithm laws in general do not carry from the real numbers to the complex numbers...

but Lnz=ln|z| + iArgz
 
aruwin said:
but Lnz=ln|z| + iArgz

And that should be enough to show that $\displaystyle \begin{align*} \alpha \, \textrm{Ln}\, \left( z + 1 \right) \neq \textrm{Ln}\,\left[ \left( z + 1 \right) ^{\alpha } \right] \end{align*}$, rather...

$\displaystyle \begin{align*} \alpha\,\textrm{Ln}\,\left( z + 1 \right) &= \alpha \left[ \ln{ \left| z +1 \right| } + \mathrm{i}\,\mathrm{Arg}\,\left( z + 1 \right) \right] \\ &= \alpha \ln{ \left| z + 1 \right| } + \mathrm{i}\,\alpha\,\textrm{Arg}\,\left( z + 1 \right) \\ &= \ln{ \left( \left| z + 1 \right| ^{\alpha} \right) } + \mathrm{i}\,\alpha\,\textrm{Arg}\,\left( z + 1 \right) \end{align*}$

which is of course, NOTHING like $\displaystyle \begin{align*} \textrm{Ln}\,{ \left[ \left( z + 1 \right) ^{\alpha} \right] } \end{align*}$...
 
Prove It said:
And that should be enough to show that $\displaystyle \begin{align*} \alpha \, \textrm{Ln}\, \left( z + 1 \right) \neq \textrm{Ln}\,\left[ \left( z + 1 \right) ^{\alpha } \right] \end{align*}$, rather...

$\displaystyle \begin{align*} \alpha\,\textrm{Ln}\,\left( z + 1 \right) &= \alpha \left[ \ln{ \left| z +1 \right| } + \mathrm{i}\,\mathrm{Arg}\,\left( z + 1 \right) \right] \\ &= \alpha \ln{ \left| z + 1 \right| } + \mathrm{i}\,\alpha\,\textrm{Arg}\,\left( z + 1 \right) \\ &= \ln{ \left( \left| z + 1 \right| ^{\alpha} \right) } + \mathrm{i}\,\alpha\,\textrm{Arg}\,\left( z + 1 \right) \end{align*}$

which is of course, NOTHING like $\displaystyle \begin{align*} \textrm{Ln}\,{ \left[ \left( z + 1 \right) ^{\alpha} \right] } \end{align*}$...

Then how should I start?
 
Prove It said:
And that should be enough to show that $\displaystyle \begin{align*} \alpha \, \textrm{Ln}\, \left( z + 1 \right) \neq \textrm{Ln}\,\left[ \left( z + 1 \right) ^{\alpha } \right] \end{align*}$, rather...

$\displaystyle \begin{align*} \alpha\,\textrm{Ln}\,\left( z + 1 \right) &= \alpha \left[ \ln{ \left| z +1 \right| } + \mathrm{i}\,\mathrm{Arg}\,\left( z + 1 \right) \right] \\ &= \alpha \ln{ \left| z + 1 \right| } + \mathrm{i}\,\alpha\,\textrm{Arg}\,\left( z + 1 \right) \\ &= \ln{ \left( \left| z + 1 \right| ^{\alpha} \right) } + \mathrm{i}\,\alpha\,\textrm{Arg}\,\left( z + 1 \right) \end{align*}$

which is of course, NOTHING like $\displaystyle \begin{align*} \textrm{Ln}\,{ \left[ \left( z + 1 \right) ^{\alpha} \right] } \end{align*}$...

I checked this on wolfram:
is e'^''('a ln'('x'+'yi')'')' '=' '('x'+'yi')''^'a - Wolfram|Alpha
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
603