Finding the concentration of a gas (thermodynamics)

  1. Hi.

    1. The problem statement, all variables and given/known data

    The root mean square velocity of oxygen molecules is 480m/s while the pressure is 20kPa.

    What is the concentration (particles/volume) of oxygen?

    2. Relevant equations

    PV=nRT
    [tex] E_{kin}=\frac{m \overline{v}^2}{2}=\frac{3}{2}kT [/tex]

    3. The attempt at a solution

    [tex] m \overline{v}^2=3kT \Rightarrow T= \frac{m \overline{v}^2}{3k} [/tex]

    [tex] PV=nR \frac{m \overline{v}^2}{3k} \Rightarrow n=\frac{3kPV}{Rm \overline{v}^2} [/tex] where [tex] m=2 \times 16 \times 1.66 \times 10^{-27} kg [/tex]

    I set V=1m^3 and get n=8.137mol and therefore [tex] \frac{n \times n_{a}}{V}=4.899 m^{-3} [/tex] where [tex] n_{a}=6.02 \times 10^{23} [/tex]

    Is this correct? I'm sure there's a simpler way to do this.
     
    Last edited: Jan 16, 2007
  2. jcsd
  3. GCT

    GCT 1,769
    Science Advisor
    Homework Helper

    Note that the mass refers to an individual oxygen molecule (from what I recall at the moment), (16 grams of Oxygen/mole of Oxygen)(1 mole/6.022 x 10^23 atoms)(1 kilogram/1000 grams)(2 atoms of Oxygen/1 diatomic molecule)=____.......the setup should be solved for n/V, this means that you need to incorporate a particular value of R, choose from the list on the page that can be linked to through the below text so that the final units for n/V is respect to moles/liter.



    http://en.wikipedia.org/wiki/Gas_constant
     
    Last edited: Jan 16, 2007
  4. Actually, since this is one of my physics class problems (not chemistry) concentration really does mean particles/volume in this case. Which means that I have chosen the right value for R, I think.
     
  5. Gokul43201

    Gokul43201 11,141
    Staff Emeritus
    Science Advisor
    Gold Member

    You're missing a factor of 10^{24} in that final bit.

    The method is perfectly correct - I haven't checked the numbers, but I believe the final number looks close enough (I happen to know that the RMS speed of oxygen molecules at room temperature is about 500m/s, and at NTP, a mole of atoms occupies about 22.4 liters, so at a fifth of an atmosphere, the concentration would be roughly 6/(5*0.0224)*10^{23} per cubic meter, which is about 10% higher than your number, but this is very rough estimate.)

    As for a simpler way, I think this is as simple as it gets. Only, notice that since R=k*Na, and M=m*Na, your final expression simplifies to n=3PV/Mv^2 (in moles).
     
    Last edited: Jan 17, 2007
  6. GCT

    GCT 1,769
    Science Advisor
    Homework Helper

    (n/v)=20 kPa(1000 Pa/1 kPa)(1.3806503 × 10-23 m2 kg s-2 K-1)3/[8.314472 m^3 · Pa · K-1 · mol-1(16 grams of Oxygen/mole of Oxygen)(1 mole/6.022 x 10^23 atoms)(1 kilogram/1000 grams)(2 atoms of Oxygen/1 diatomic molecule)(480 m/s)^2]= 0.00813782909722 moles/m^3

    (0.00813782909722 moles Oxygen/L)(6.022x10^23 molecules Oxygen/mole)= 4.900600682 x 10^24 molecules/m^3

    So there's everything done in a perfunctory fashion for ya, I wanted to see what answer would result with the "chemist" method.:smile:

    I'm going to need to see if the units cancel out exactly.......
     
    Last edited: Jan 17, 2007
Know someone interested in this topic? Share this thead via email, Google+, Twitter, or Facebook

Have something to add?