Finding the constants of the general approximate solution to a double pendulum

  • Thread starter Thread starter giovanna
  • Start date Start date
  • Tags Tags
    Functions
Click For Summary
The discussion revolves around solving a system of equations related to the general approximate solution of a double pendulum. The user is attempting to find constants A1, A2, δ1, and δ2 by applying initial conditions to their derived equations. They present a general solution involving trigonometric functions and differentiate to obtain velocity equations. The user expresses confusion about whether to solve the equations simultaneously or individually. The thread highlights the importance of properly formatting LaTeX for clarity in mathematical discussions.
giovanna
Messages
1
Reaction score
0
Homework Statement
Given the (approximate) general solution to the double pendulum, find the constant $A_1$, $A_2$, $\delta_1$ and $\delta_2$ by stating some initial conditions for the double pendulum.
Relevant Equations
$\phi(t) = A_1 \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} \cos(\omega_1 t - \delta_1) + A_2 \begin{pmatrix} 1 \\ -\sqrt{2} \end{pmatrix} \cos(\omega_2 t - \delta_2)
$
EDIT: My Latex is not showing... Sorry. I attached a file with my "solution".

I though this would be quite easy, but I can't seem to solve this system of equations. Should I solve for each mode, or both of them together? I tried to solve them together, here's how far I get:

double.png

$\text{General solution:} \\

\phi(t)=A_1\binom{1}{\sqrt{2}}\cos\left(\omega_1t-\delta_1\right)+A_2\binom{1}{-\sqrt{2}}\cos\left(\omega_2t-\delta_2\right)

\text{Expanding the components, we get} \\

\phi_1(t)=A_1\cos\left(\omega_1t-\delta_1\right)+A_2\cos\left(\omega_2t-\delta_2\right) \\
\phi_2(t)=\sqrt{2}A_1\cos\left(\omega_1t-\delta_1\right)-\sqrt{2}A_2\cos\left(\omega_2t-\delta_2\right)

\text{Neglecting the amplitudes, this can be written as} \\

\phi_1(t)=A_1\cos\left(\omega_1t-\delta_1\right)+A_2\cos\left(\omega_2t-\delta_2\right) \\
\phi_2(t)=A_1\cos\left(\omega_1t-\delta_1\right)-A_2\cos\left(\omega_2t-\delta_2\right)

\text{Differentiating, we obtain} \\

\dot{\phi}_1(t)=-\omega_1A_1\sin\left(\omega_1t-\delta_1\right)-\omega_2A_2\sin\left(\omega_2t-\delta_2\right) \\
\dot{\phi}_2(t)=-\omega_1A_1\sin\left(\omega_1t-\delta_1\right)+\omega_2A_2\sin\left(\omega_2t-\delta_2\right)

\text{To find the particular solution, we need to determine } A_1, A_2, \delta_1, \text{ and } \delta_2. \text{ Choosing the initial conditions} \\

\phi_1(0)=\phi_2(0)=\frac{\pi}{6} \\
\dot{\phi}_1(0)=\dot{\phi}_2(0)=0

\text{We obtain a system of equations with four equations and four unknowns:} \\

A_1\cos(\delta_1)+A_2\cos(\delta_2)=\frac{\pi}{6} \\
A_1\cos(\delta_1)-A_2\cos(\delta_2)=\frac{\pi}{6} \\
-\omega_1A_1\sin(\delta_1)-\omega_2A_2\sin(\delta_2)=0 \\
-\omega_1A_1\sin(\delta_1)+\omega_2A_2\sin(\delta_2)=0

\text{Since } \cos(-x)=\cos(x) \text{ and } \sin(-x)=-\sin(x), \text{ we can rewrite this as} \\

A_1\cos(\delta_1)+A_2\cos(\delta_2)=\frac{\pi}{6}\ (1) \\
A_1\cos(\delta_1)-A_2\cos(\delta_2)=\frac{\pi}{6}\ (2) \\
\omega_1A_1\sin(\delta_1)+\omega_2A_2\sin(\delta_2)=0\ (3) \\
\omega_1A_1\sin(\delta_1)-\omega_2A_2\sin(\delta_2)=0\ (4)$
 
Physics news on Phys.org
Your LaTex is unreadable. You should preview it and edit as necessary before posting. (You probably need to reload your post page in your browser before you can see your LaTex rendered properly.)
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
5
Views
1K
Replies
11
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
13
Views
2K
Replies
4
Views
992
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
3K