MHB Finding the Counter Clockwise Angle of Vector Difference B-A with the +x Axis

  • Thread starter Thread starter ashcash
  • Start date Start date
  • Tags Tags
    Trig Vectors
ashcash
Messages
3
Reaction score
0
I have a question on finding the counter clockwise angle the vector difference B-A makes with the +x axis
I already have the components of vector difference for B-A and I have checked that they are correct they are 2.77,-5.95
I started with doing the tan function (opp/adj) which was -5.95/2.77
I got -2.148 which I found the tan(-2.148) to be -1.536
I then found the arctan to be 56.934
I then subtracted 360-56.93 and got an answer to be 303.07
This proved to be wrong and I am wondering if someone could help find where my mistake is.
 
Mathematics news on Phys.org
I find that your question is a bit unclear, do you have the original question?

You got $2.77$ and $-5.95$; are those the lengths of the $x$ and $y$ components of the vector respectively?

$$\tan\left({\theta}\right)=\frac{5.95}{2.77}$$

I do not get $\theta$ the be $57$ degrees.
 
Sorry for the confusing question, the question word for word is
"Find the counterclockwise angle the vector difference B⃗ −A⃗ makes with the +x axis."
2.77 is for B and -5.95 is for A
So my math must be off, I am assuming I went wrong getting
tan(θ)=-5.95/2.77
First I took what I got from dividing the two which was -2.148, and plugged it in my calculator and like this (tan -2.148) and got 1.536
then I do arctan(1.536) am I right?
 
I see your mistake now.

For all intents and purposes, the signs don't don't matter since we're dealing with magnitudes here. We can just adjust accordingly depending on what quadrant we are on.

$$\tan\left({\theta}\right)=\frac{5.95}{2.77}$$

Theta is computed by the inverse tangent:

$$\tan^{-1}\left({\frac{5.95}{2.77}}\right)\approx65 \text{ degrees}$$

If your calculator is on radians, use the conversion factor $\frac{180}{\pi}$

- - - Updated - - -

Notice, however, that your question wants $\vec{B-A}$, so we need to flip the vector $\vec{A}$ in the opposite directions. Therefore, the vector lies on the first quadrant.
 
I understand my mistake now!
Thank you so much!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top