lamerali
- 62
- 0
Another problem I'm not sure of :(
find \frac{dy}{dx} for the function xy^{2} + x lnx = 4y
my answer
y^{2} + x2y \frac{dy}{dx} + lnx + x (1/x) \frac{dy}{dx} = 4\frac{dy}{dx}
x2y \frac{dy}{dx} + \frac{dy}{dx} - 4\frac{dy}{dx} = -y ^{2} - lnx
\frac{dy}{dx} ( x2y - 3) = -y^{2} - lnx
\frac{dy}{dx} = \frac{-y ^{2} - lnx}{x2y - 3}
I'm not sure if this is the correct answer again any guidance is greatly appreciated!
Thank you
find \frac{dy}{dx} for the function xy^{2} + x lnx = 4y
my answer
y^{2} + x2y \frac{dy}{dx} + lnx + x (1/x) \frac{dy}{dx} = 4\frac{dy}{dx}
x2y \frac{dy}{dx} + \frac{dy}{dx} - 4\frac{dy}{dx} = -y ^{2} - lnx
\frac{dy}{dx} ( x2y - 3) = -y^{2} - lnx
\frac{dy}{dx} = \frac{-y ^{2} - lnx}{x2y - 3}
I'm not sure if this is the correct answer again any guidance is greatly appreciated!
Thank you