Finding the differential equation of motion

Click For Summary
The discussion focuses on deriving the differential equation of motion for a particle sliding along a parabolic track, described by the equation y = (r^2)/(2R). The initial equation of motion presented is r"(R^2 + r^2) + (r'^2)r + g*r*R = 0, but the user struggles to simplify it to the standard form y" + a*y' + b*y = F(t). The solution involves using energy conservation principles to express (r')^2 in terms of r, leveraging initial conditions for calculations. Ultimately, the user successfully resolves their doubts with assistance from others in the discussion. The conversation emphasizes the importance of energy conservation in solving motion equations.
dbeckam
Messages
8
Reaction score
1
Thread moved from the technical forums to the schoolwork forums
Summary:: Differential equation of motion, parabola

Hi. I've tried resolve this problem but I have two doubts. The first is about the differential equation of motion because I can't simplify it to the form y" + a*y' + b*y = F(t). I'm not sure if what I got is right. My second doubt is that I cannot solve part b. Thank you in advance for your help.

In part a I got this: r"(R^2 + r^2) + (r'^2)r + g*r*R = 0.

Problem:
A particle of mass m slides without friction along a fixed track in the form of a parabola. The equation of the parabola is y = (r^2)/(2R). R is a constant, r is the distance between O and Q, y is the vertical distance. Initial conditions: r(t=0) = r_0 and r'(t=0) = 0.

a) Find the differential equation of motion in terms of the variable r.
b) Find an expression for (r')^2 in function of r.
Untitled picture.png
 
Physics news on Phys.org
I agree with your equation of motion. The easiest way to find ##\dot{r}## is by considering the energy, which you should write as a function of ##r## and ##\dot{r}##. The energy is conserved and equal to its initial value, ##E(r,\dot{r}) = E_0##, which you can find from the initial conditions.
 
dbeckam said:
I can't simplify it to the form y" + a*y' + b*y = F(t)
Why do you think it should be possible to simplify it to this form? This form is in essence a driven harmonic oscillator with a friction term.
 
Orodruin said:
Why do you think it should be possible to simplify it to this form? This form is in essence a driven harmonic oscillator with a friction term.
Yes, I understand. Thanks!
 
ergospherical said:
I agree with your equation of motion. The easiest way to find ##\dot{r}## is by considering the energy, which you should write as a function of ##r## and ##\dot{r}##. The energy is conserved and equal to its initial value, ##E(r,\dot{r}) = E_0##, which you can find from the initial conditions.
I already resolved it. Thank you very much.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...