- #1
PhysicsRock
- 117
- 18
Greetings,
in one of the exercise sheets we were given by our Prof, we were supposed to draw the trajectory of a patricle that moves toward a bounded spherical potential that satisfies
##
V(\vec{r}) = \begin{cases}
V_0 & | \vec{r} | \leq a \\
0 & else \\
\end{cases}
##
for ##E_\text{particle} < V_0##. I drew a circular path within the potential boundary, but apparently that is wrong. A friend of mine brought to my attention that the particle couldn't enter the potential at all, if it's Energy is lower than the potential energy. I wanted to take a look at this analytically and derived the differential equation
##
m \ddot{\vec{r}} = V_0 \left[ \delta(r - a) - \delta(r + a) \right] \frac{\vec{r}}{r}
##
with ##r = | \vec{r} |##. Intuitively, it makes sense to me as there is no Force on the particle unless it's right at the boundaries where the potential changes, thus satisfying ##\vec{F} = - \nabla V##.
To come to my question, has anyone got any idea how this could be solved, if it is even possible to solve an equation of that form?
in one of the exercise sheets we were given by our Prof, we were supposed to draw the trajectory of a patricle that moves toward a bounded spherical potential that satisfies
##
V(\vec{r}) = \begin{cases}
V_0 & | \vec{r} | \leq a \\
0 & else \\
\end{cases}
##
for ##E_\text{particle} < V_0##. I drew a circular path within the potential boundary, but apparently that is wrong. A friend of mine brought to my attention that the particle couldn't enter the potential at all, if it's Energy is lower than the potential energy. I wanted to take a look at this analytically and derived the differential equation
##
m \ddot{\vec{r}} = V_0 \left[ \delta(r - a) - \delta(r + a) \right] \frac{\vec{r}}{r}
##
with ##r = | \vec{r} |##. Intuitively, it makes sense to me as there is no Force on the particle unless it's right at the boundaries where the potential changes, thus satisfying ##\vec{F} = - \nabla V##.
To come to my question, has anyone got any idea how this could be solved, if it is even possible to solve an equation of that form?