Finding the directions of eigenvectors symmetric eigenvalue problem

AI Thread Summary
In the symmetric eigenvalue problem, the eigenvectors are derived from the normalized form of the stiffness and mass matrices, represented as Kv=w^2*v. Each eigenvalue corresponds to an eigenspace that can have multiple dimensions, indicating that there is not a single eigenvector but rather a set of vectors. The discussion emphasizes that the negatives of eigenvectors are also valid eigenvectors. In complex vector spaces, normalized eigenvectors can be expressed with a complex phase factor, allowing for variations in their representation. Understanding these aspects is crucial for accurately determining the directions of eigenvectors in symmetric eigenvalue problems.
Andrew1235
Messages
5
Reaction score
1
Homework Statement
In the symmetric eigenvalue problem, K~v=w2v where K~=M−1/2KM−1/2, where K and M are the stiffness and mass matrices respectively.
Relevant Equations
K~v=w2v where K~=M−1/2KM−1/2
In the symmetric eigenvalue problem, Kv=w^2*v where K~=M−1/2KM−1/2, where K and M are the stiffness and mass matrices respectively. The vectors v are the eigenvectors of the matrix K~ which are calculated as in the example below. How do you find the directions of the eigenvectors? The negatives of the eigenvectors of a matrix are also eigenvectors of the matrix.
 

Attachments

  • symmetric.png
    symmetric.png
    37 KB · Views: 141
Physics news on Phys.org
Andrew1235 said:
How do you find the directions of the eigenvectors? The negatives of the eigenvectors of a matrix are also eigenvectors of the matrix.
When we talk about eigenvectors, we are really taking about eigenspaces. Each eigenvalue has an eigenspace of one or more dimensions associated with it. No single vector is the eigenvector. In this case, you have a 1D eigenspace associated with each eigenvalue.

The author has chosen normalised ##v_1, v_2##, which limits the choice to ##\pm v_1, \pm v_2##.

In complex vector spaces, a normalised eigenvector is determined only up to a complex "phase factor" of unit modulus. E.g. a normalised eigenvector can take the form ##\alpha v##, where ##v## is a normalised eigenvector and ##\alpha## is any complex number of unit modulus. And, of course, real numbers of unit modulus reduces to ##\pm 1##.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top