Finding the directions of eigenvectors symmetric eigenvalue problem

AI Thread Summary
In the symmetric eigenvalue problem, the eigenvectors are derived from the normalized form of the stiffness and mass matrices, represented as Kv=w^2*v. Each eigenvalue corresponds to an eigenspace that can have multiple dimensions, indicating that there is not a single eigenvector but rather a set of vectors. The discussion emphasizes that the negatives of eigenvectors are also valid eigenvectors. In complex vector spaces, normalized eigenvectors can be expressed with a complex phase factor, allowing for variations in their representation. Understanding these aspects is crucial for accurately determining the directions of eigenvectors in symmetric eigenvalue problems.
Andrew1235
Messages
5
Reaction score
1
Homework Statement
In the symmetric eigenvalue problem, K~v=w2v where K~=M−1/2KM−1/2, where K and M are the stiffness and mass matrices respectively.
Relevant Equations
K~v=w2v where K~=M−1/2KM−1/2
In the symmetric eigenvalue problem, Kv=w^2*v where K~=M−1/2KM−1/2, where K and M are the stiffness and mass matrices respectively. The vectors v are the eigenvectors of the matrix K~ which are calculated as in the example below. How do you find the directions of the eigenvectors? The negatives of the eigenvectors of a matrix are also eigenvectors of the matrix.
 

Attachments

  • symmetric.png
    symmetric.png
    37 KB · Views: 138
Physics news on Phys.org
Andrew1235 said:
How do you find the directions of the eigenvectors? The negatives of the eigenvectors of a matrix are also eigenvectors of the matrix.
When we talk about eigenvectors, we are really taking about eigenspaces. Each eigenvalue has an eigenspace of one or more dimensions associated with it. No single vector is the eigenvector. In this case, you have a 1D eigenspace associated with each eigenvalue.

The author has chosen normalised ##v_1, v_2##, which limits the choice to ##\pm v_1, \pm v_2##.

In complex vector spaces, a normalised eigenvector is determined only up to a complex "phase factor" of unit modulus. E.g. a normalised eigenvector can take the form ##\alpha v##, where ##v## is a normalised eigenvector and ##\alpha## is any complex number of unit modulus. And, of course, real numbers of unit modulus reduces to ##\pm 1##.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top