Finding the Integral of 1/1+25x^2: Using Substitution

  • Thread starter Thread starter eaglesfn68
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral of 1/(1+25x^2) can be solved using substitution by rewriting it as 1/(1+(5x)^2). The substitution involves letting u = 5x, which leads to du = 5 dx, allowing the integral to be expressed as (1/5)arctan(u). The limits of integration change accordingly from x=0 to u=0 and from x=sqrt(3)/5 to u=sqrt(3). This method effectively simplifies the problem and aligns with the derivative of arctan, confirming the correct approach to the solution.
eaglesfn68
Messages
3
Reaction score
0

Homework Statement



integral of 1/1+25x^2 evaluated at sqrt.3/5 and 0/

Homework Equations



arctan=1/1+x^2
arcsing=1/(sqrt.(1-x^2))
lnx=1/x

The Attempt at a Solution



not sure if i have to use substitution or use lnx=1/x

this is what i tried, probably not right, integral 1/1+25x^2 = ln(1+25x^2)
 
Physics news on Phys.org


You were on the right track with that first relevant equation, arctan=1/1+x^2. I'd go with that.

Your answer of ln(1+25x^2) does not work, since taking the derivative will end up giving you a 50x on top, which doesn't match what you integrated.
 


thanks.

so: ddx arctan= 1/1+x^2

so i think i have to use substitution to get the answer.

so i can rewrite the equation as 1/1+(5x)^2

u= 5x
du= 5 dx
dx = du/5

then i would get 1/2 du / 1+u^2 which i could then make into 1/5arctan(u)

then the integrals would have to be changed x=0, u=0, x=(sqrt. 3) / 5, u= sqrt. 3
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
6K
Replies
4
Views
2K
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K