MHB Finding the Length of the Right Angle Bisector

  • Thread starter Thread starter Heatherirving
  • Start date Start date
  • Tags Tags
    Angle Length
Click For Summary
SUMMARY

The discussion focuses on calculating the length of the right angle bisector in a right-angled triangle with legs of lengths 'a' and 'b'. The Pythagorean theorem is applied initially, followed by the Law of Cosines to derive relationships between the segments formed by the bisector. The final formula derived for the length of the bisector 'x' is given as x = (√2 * ab) / (a + b), confirming the calculations through both trigonometric and coordinate geometry approaches.

PREREQUISITES
  • Understanding of the Pythagorean theorem
  • Familiarity with the Law of Cosines
  • Knowledge of the Law of Sines
  • Basic coordinate geometry concepts
NEXT STEPS
  • Study the derivation of the Law of Cosines in detail
  • Explore applications of the Law of Sines in triangle geometry
  • Learn about coordinate geometry transformations
  • Investigate properties of angle bisectors in triangles
USEFUL FOR

Mathematicians, geometry students, educators, and anyone interested in advanced triangle properties and calculations.

Heatherirving
Messages
7
Reaction score
0
Hello

I would need help to continue.

calculation problem:
Given a right angled triangle with catheter lengths a and b length units, determine and indicate the length of the bisectris to the right angle.View attachment 6595

find: Xa^2 + b^2 = (y+z)^2X^2 + y^2 = a ^2X^2 + z^2 = b ^2
 

Attachments

  • ScreenShot_20170509232931.png
    ScreenShot_20170509232931.png
    16.4 KB · Views: 121
Last edited:
Mathematics news on Phys.org
I agree that we can apply the Pythagorean theorem to the right triangle:

$$a^2+b^2=(y+z)^2$$

However, for the two smaller triangles, they aren't necessarily right triangles, so we could apply the Law of Cosines instead:

$$z^2=x^2+b^2-\sqrt{2}bx$$

$$y^2=x^2+a^2-\sqrt{2}ax$$

Adding these last two equations together, we find:

$$y^2+z^2=2x^2+a^2+b^2-\sqrt{2}(a+b)x$$

Application of the Law of Sines yields (where $\theta$ is the angle subtended by $b$ and $z$):

$$\frac{x}{\sin(\theta)}=\sqrt{2}z$$

$$\frac{x}{\cos(\theta)}=\sqrt{2}y$$

Multiplying them together and rewriting the trig. functions as ratios, there results:

$$2yz=\frac{x^2(a^2+b^2)}{ab}$$

Adding this to the previous sum, we get:

$$y^2+2yz+z^2=2x^2+\frac{x^2(a^2+b^2)}{ab}+a^2+b^2-\sqrt{2}(a+b)x$$

Can you proceed?
 
Many thanks for your help; :)
 
Another approach would be to use coordinate geometry...we orient the right triangle in the first quadrant with the right angle at the origin, and to the hypotenuse lies along the line:

$$\frac{x}{a}+\frac{y}{b}=1$$

And the line segment labeled "x" lies along the line:

$$y=x$$

Substituting for $y$ into the first equation, we find:

$$\frac{x}{a}+\frac{x}{b}=1$$

Hence:

$$y=x=\frac{ab}{a+b}$$

Since the diagonal of a square with sides $s$ is $\sqrt{2}s$, we conclude the length of the segment labeled "x" is:

$$x=\frac{\sqrt{2}ab}{a+b}$$

And this agrees with the eventual outcome of my first post in this thread. :D
 
wonderful :o
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
6K