Finding the Line Normal to a Hyperbola: Domenic's Q&A at Yahoo Answers

Click For Summary
SUMMARY

The discussion addresses the mathematical problem of finding the normal line to the hyperbola defined by the equation x²/4 - y²/9 = 1 at the point where x=4 and y>0. The coordinates of the point on the curve are determined to be (4, 3√3). The slope of the normal line at this point is calculated to be -1/√3, leading to the equation of the normal line in general form: x + √3y - 13 = 0. This solution involves implicit differentiation and the application of the point-slope formula.

PREREQUISITES
  • Understanding of hyperbolas and their equations
  • Knowledge of implicit differentiation techniques
  • Familiarity with the point-slope form of a line
  • Ability to manipulate algebraic expressions into standard form
NEXT STEPS
  • Study implicit differentiation in calculus
  • Learn about the properties and applications of hyperbolas
  • Explore the derivation of normal lines to curves
  • Practice converting equations into general form
USEFUL FOR

Students studying calculus, mathematicians interested in conic sections, and educators teaching analytical geometry concepts.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

An Hyperbola has the equation x^2/4 - y^2/9 = 1?


- Find the coordinates of the point on this curve with x=4, y>0
- Find the slope of the normal to the curve at this point, and hence find the equation of the normal. Give the equation in general form, ie. Ax+By+C=0

I have posted a link there to this thread so the OP can see my work.
 
Physics news on Phys.org
Hello Domenic,

We are given the hyperbola:

$$\frac{x^2}{4}-\frac{y^2}{9}=1$$

Let's multiply through by $36$ to obtain:

(1) $$9x^2-4y^2=36$$

Letting $x=4$, we find:

$$9(4)^2-4y^2=36$$

Divide through by 4:

$$36-y^2=9$$

$$y^2=27$$

Since we are told $y>0$, taking the positive root, we find:

$$y=3\sqrt{3}$$

Hence, the coordinates of the point are:

$$\left(4,3\sqrt{3} \right)$$

Now, to find the normal slope, we need to implicitly differentiate (1) with respect to $-y$ to get:

$$18x\left(-\frac{dx}{dy} \right)-8y(-1)=0$$

$$-\frac{dx}{dy}=-\frac{4y}{9x}$$

Thus, the slope of the normal line at the given point is:

$$\left. -\frac{dx}{dy} \right|_{(x,y)=\left(4,3\sqrt{3} \right)}=-\frac{4\left(3\sqrt{3} \right)}{9(4)}=-\frac{1}{\sqrt{3}}$$

Now, we have a point on the normal line and the slope, thus the point-slope formula yields:

$$y-3\sqrt{3}=-\frac{1}{\sqrt{3}}(x-4)$$

Multiply through by $-\sqrt{3}$:

$$-\sqrt{3}y+9=x-4$$

Arrange in the required standard form:

$$x+\sqrt{3}y-13=0$$

Here is a plot of the hyperbola and the normal line at the given point:

View attachment 1658
 

Attachments

  • domenic.jpg
    domenic.jpg
    8.9 KB · Views: 97

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K