How can the direction of propagation help in determining the phase of a wave?

Click For Summary

Homework Help Overview

The discussion revolves around determining the phase of a sinusoidal wave function given specific parameters and conditions. The subject area includes wave mechanics, specifically focusing on wave propagation and phase determination.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the relationship between the wave function parameters and the phase, particularly questioning how to resolve multiple possible values for the phase without additional initial conditions. There is also a focus on the implications of the direction of wave propagation.

Discussion Status

Some participants have noted the lack of sufficient information to definitively determine the phase. There is an acknowledgment of the importance of the direction of propagation, suggesting that this aspect may influence the phase determination.

Contextual Notes

Participants reference the initial conditions provided in the homework statement and discuss the implications of these conditions on the wave function. There is a mention of potential confusion regarding the correct formulation of the wave function in LaTeX.

Philip551
Messages
16
Reaction score
5
Homework Statement
Find the wavefunction of a sinusoidal wave that propagates on a string towards the negative direction of the x-axis given that ##y_{max}## = 8cm, f = 3Hz, ##\lambda## = 80cm and that y(0,t)=0 at t=0.
Relevant Equations
$$y(x,t)= y_{max} sin(kx- \omega t + \phi)$$
Using the equation above I know that I have to find parameters k ##\omega## and ##\phi##.

$$k = \frac{2\pi}{\lambda}$$

and

$$\omega = 2\pi f$$

The problem I've been having is how you would go about finding ##\phi## since by solving:

$$y(0,0)=0 \rightarrow sin(\phi)=0 \rightarrow \phi = 0, \pi $$

you get two different possible values for phi. How would you decide which one is correct without another initial condition?
 
Physics news on Phys.org
Why is ##y(0,0)=0##? Note that you should write ##y(x,t)=y_{max}\sin(kx-\omega t+\phi)## not ##y(x,t)=y_{m}ax\sin(kx-\omega t+\phi)##. The amplitude in LaTeX should be (without the delimiters) y_{max} not y_max.
 
kuruman said:
Why is ##y(0,0)=0##? Note that you should write ##y(x,t)=y_{max}\sin(kx-\omega t+\phi)## not ##y(x,t)=y_{m}ax\sin(kx-\omega t+\phi)##. The amplitude in LaTeX should be (without the delimiters) y_{max} not y_max.
I understood that y(0,t)=0 at t =0 (from the homework statement)is the same as y(0,0)=0
 
Philip551 said:
Homework Statement:: Find the wavefunction of a sinusoidal wave that propagates on a string towards the negative direction of the x-axis given that ##y_{max}## = 8cm, f = 3Hz, ##\lambda## = 80cm and that y(0,t)=0 at t=0.
Relevant Equations:: $$y(x,t)= y_{max} sin(kx- \omega t + \phi)$$

Using the equation above I know that I have to find parameters k ##\omega## and ##\phi##.

$$k = \frac{2\pi}{\lambda}$$

and

$$\omega = 2\pi f$$

The problem I've been having is how you would go about finding ##\phi## since by solving:

$$y(0,0)=0 \rightarrow sin(\phi)=0 \rightarrow \phi = 0, \pi $$

you get two different possible values for phi. How would you decide which one is correct without another initial condition?
Yes, there is not enough information to determine the phase exactly.
But you seem to have ignored the info about the direction of propagation.
 
haruspex said:
Yes, there is not enough information to determine the phase exactly.
But you seem to have ignored the info about the direction of propagation.
That is what I though.

I forgot to include that. It should be:

$$y(x,t) = y_{max} sin(kx+\omega t + \phi)$$
 
  • Like
Likes   Reactions: haruspex

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
9
Views
2K
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
1K
  • · Replies 70 ·
3
Replies
70
Views
6K
Replies
1
Views
1K
  • · Replies 23 ·
Replies
23
Views
5K