Finding the Potential of a Charged Rod on the x-axis

Click For Summary

Homework Help Overview

The discussion revolves around finding the electric potential of a positively charged rod positioned along the x-axis. The rod has a total charge Q and extends symmetrically from -L/2 to L/2, with a point of interest located at a distance x to the right of the rod.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants explore the integration of charge elements along the rod to calculate potential, questioning the limits of integration and the expression for distance R. There is discussion about the correct setup for the integration bounds and the relationship between the charge density and the total charge.

Discussion Status

Participants are actively engaging with the problem, offering insights and corrections regarding the setup of the integral. Some have suggested re-evaluating the distance from the point of interest to the charge elements, while others have provided feedback on the clarity of variable definitions. There is a recognition of the need to express the final result in terms of the given variables.

Contextual Notes

Some participants express confusion over the definitions and relationships between the variables involved, particularly regarding the distance R and the limits of integration. There is an acknowledgment of the complexity introduced by the geometry of the problem.

camira
Messages
3
Reaction score
0

Homework Statement


Hi all,
I need to find the potential of a positively charged rod with charge Q. Assuming to the right as positive,the center of the rod is on the origin, and it extends to -L/2 in the negative x direction, and L/2 in the positive x direction.
There is a point at distance x, located to the right of the rod, on the x axis.
I have to express the answer in terms of the variables Q, L, x, and appropriate constants.

Homework Equations


V= ∫K*dQ/R
λ=Q/L

The Attempt at a Solution


I know this question has been asked here before, but I wasn't able to come to a conclusion about it myself based on these posts...so here we go:
I started by choosing an arbitrary point on the rod, called dQ, that is a distance dx away from the point.
λ=dQ/dx
dQ=λ*dx
I have my equation
V=∫K*dQ/R
sub in for dQ
V=∫K*λ*dx/R
I know I need to integrate over the length of the rod. So i decided to use the bounds as 0 to L/2, and then multiply the integral by 2.
This is where I am stuck. I don't know what the value for R is...I am leaning towards x+L..but I am not sure. Also I seem to have gotten rid of my Q variable..so I am not sure I should have subbed in λ*dx for it...
Any suggestions would be greatly appreciated!
 
Physics news on Phys.org
camira said:
I started by choosing an arbitrary point on the rod, called dQ, that is a distance dx away from the point.
x is a finite distance away from the end of the rod. What you say here makes no sense to me.
Consider various elements of charge dQ = λ dx along the rod. The element of dQ closest to x will be at what distance from x? The element of charge dQ farthest from x will be at what distance from x? So what should be your limits of integration?
 
rude man said:
x is a finite distance away from the end of the rod. What you say here makes no sense to me.
Consider various elements of charge dQ = λ dx along the rod. The element of dQ closest to x will be at what distance from x? The element of charge dQ farthest from x will be at what distance from x? So what should be your limits of integration?
The closest element of dQ to x will be...L/2 + x...I'm not sure about the furthest...I am thinking x+L?
I am still not sure about the radius R though, because the small section of charge being summed can be at any distance on the rod away from the set point.
 
If you already have an x axis, it's better to have point at position x, not at distance x (that's confusing). Make a drawing to find out what is meant with the variables involved. Also you want to clearly distinguish between the integration variable (I see a dx) and the ('fixed' *) x coordinate of the point where you want to calculate the potential.

*) 'during' the integration

So i decided to use the bounds as 0 to L/2, and then multiply the integral by 2.
Not wise. The integrand isn't the same for the other interval
 
Thanks everyone for the replies
After contemplating this further, I think I didn't do a very good job of conceptualizing the situation
So starting from the beginning:
Let's call the distance the point is away(so from the origin to the point) x.
Rod is the same -L/2 to L/2
The distance that my charge, dQ, is at, from the origin, is D.
λ=dQ/dD=Q/L, so λdD=(Q/L*dD)
I know that the distance from the point to my dQ is x-D, so R=x-D
I want to integrate from -L/2 to L/2
so:
K∫λdD/R
Kλ∫dD/(x-D)
Integrate:
Kλ [-ln (x-D)] from -L/2 to L/2
Kλ[-ln (x- L/2) + ln(x+L/2)]
using log rules:
Kλ[ln((x+L/2)/(x-L/2))
to express in terms of Q, just sub in for λ=Q/L
I think this is more accurate
 
camira said:
Kλ[ln((x+L/2)/(x-L/2))
to express in terms of Q, just sub in for λ=Q/L
I think this is more accurate
This is correct. Good!
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
941
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
7K
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 20 ·
Replies
20
Views
6K