Finding the roots of quadratic equation

Click For Summary

Discussion Overview

The discussion revolves around finding the roots of the quadratic equation $(2m + 1)x^2 - 4mx = 1 - 3m$ under the condition that it has equal roots. Participants explore different methods to solve the problem without using the discriminant, including completing the square and comparing coefficients.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant requests alternative methods to solve the quadratic equation without using the discriminant.
  • Another participant suggests completing the square and provides a detailed approach to transform the equation, indicating that for equal roots, the right-hand side must equal zero.
  • A different method is proposed involving comparing coefficients, leading to two equations that relate the roots to the parameters of the equation.
  • One participant expresses confusion about the notation used in the comparison of coefficients method, questioning the distinction between the variables $x$ and $r$.
  • Another participant clarifies that in the context of the equation $(x - r)^2 = 0$, $x$ and $r$ represent the same root, while in the expanded form, they are treated as different variables.

Areas of Agreement / Disagreement

Participants generally agree on the methods proposed for finding the roots, but there is some confusion regarding the notation and the relationship between $x$ and $r$. The discussion remains open with no consensus on a single method being preferred.

Contextual Notes

Participants have not resolved the implications of their methods regarding the conditions for equal roots, and there are unresolved questions about the clarity of variable representation in the equations discussed.

paulmdrdo1
Messages
382
Reaction score
0
can you show me a way of solving this problem without considering the discriminant.

Find the roots of equation subject to the given condition.

$(2m + 1)x^2-4mx = 1-3m$ has equal roots.

I solved it using discriminant but I want to know other way of solving it. Thanks!
 
Mathematics news on Phys.org
paulmdrdo said:
can you show me a way of solving this problem without considering the discriminant.

Find the roots of equation subject to the given condition.

$(2m + 1)x^2-4mx = 1-3m$ has equal roots.

I solved it using discriminant but I want to know other way of solving it. Thanks!

you can complete the square and make the constant part as zero

first multiply by (2m + 1) to avoid redical

$((2m + 1)x)^2-2(2m)((2m+1)x) = (1-3m)(2m+1)$

add 4m^2 on both sides to complete square
$((2m + 1)x)^2-2(2m)((2m+1)x) + (2m)^2 = (1-3m)(2m+1)+ 4m^2$

or $((2m+1)x- 2m)^2 = (1-3m)(2m+1)+ 4m^2$

for the roots to be equal RHS has to be zero

now you should be above to proceed
 
Another way to do this is by "comparing coefficients".

If:

$x^2 - \dfrac{4m}{2m+1}x + \dfrac{3m - 1}{2m+1} = 0 = (x-r)^2 = x^2 - 2rx + r^2$

we get two equations:

$2r = \dfrac{4m}{2m+1}$

$r^2 = \dfrac{3m - 1}{2m + 1}$.

Thus:

$r^2 = \left(\dfrac{2m}{2m+1}\right)^2 = \dfrac{3m-1}{2m+1}$.

This allows you to solve for $m$, and thus solve for $x = r$.
 
where did you get this?

$(x-r)^2 = x^2 - 2rx + r^2$

I thought something similar to this by letting r to be the roots of my equation.

since $S = \frac{-b}{a}=r+r$

I get $\frac{-b}{a}=2r$

and $P=\frac{c}{a}=r\times r$

I get $ \frac{c}{a}=r^2$

now I will have the same equation as you do

$2r=\frac{4m}{2m+1}$

and

$r^2=\frac{3m-1}{2m+1}$

Am I thinking it the same way that you did?

the r here is the value that I will plug in place of x in my equation.

but from this $(x-r)^2 = x^2 - 2rx + r^2$ It seems x and r are different?

why is that? thanks!
 
Last edited:
In THIS equation:

$(x-r)^2 = x^2 - 2rx + r^2$

$r$ and $x$ ARE different.

But in THIS equation:

$(x - r)^2 = 0$

we must have $x - r = 0$ (0 is the square root of 0), and thus $x = r$.

And yes, you were thinking correctly, good job!
 
Oh yes that's helpful. :) thanks!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
5K
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K