MHB Finding the roots of quadratic equation

AI Thread Summary
The discussion revolves around finding the roots of the quadratic equation (2m + 1)x^2 - 4mx = 1 - 3m, specifically seeking methods that do not involve the discriminant. One suggested approach is to complete the square, leading to the condition that the right-hand side must equal zero for equal roots. Another method involves comparing coefficients, where the relationships between the roots and coefficients yield equations that can be solved for m and subsequently for x. Participants confirm that their reasoning aligns, clarifying the distinction between the variables x and r in the context of the equations. The conversation emphasizes alternative techniques for solving quadratic equations without relying on the discriminant.
paulmdrdo1
Messages
382
Reaction score
0
can you show me a way of solving this problem without considering the discriminant.

Find the roots of equation subject to the given condition.

$(2m + 1)x^2-4mx = 1-3m$ has equal roots.

I solved it using discriminant but I want to know other way of solving it. Thanks!
 
Mathematics news on Phys.org
paulmdrdo said:
can you show me a way of solving this problem without considering the discriminant.

Find the roots of equation subject to the given condition.

$(2m + 1)x^2-4mx = 1-3m$ has equal roots.

I solved it using discriminant but I want to know other way of solving it. Thanks!

you can complete the square and make the constant part as zero

first multiply by (2m + 1) to avoid redical

$((2m + 1)x)^2-2(2m)((2m+1)x) = (1-3m)(2m+1)$

add 4m^2 on both sides to complete square
$((2m + 1)x)^2-2(2m)((2m+1)x) + (2m)^2 = (1-3m)(2m+1)+ 4m^2$

or $((2m+1)x- 2m)^2 = (1-3m)(2m+1)+ 4m^2$

for the roots to be equal RHS has to be zero

now you should be above to proceed
 
Another way to do this is by "comparing coefficients".

If:

$x^2 - \dfrac{4m}{2m+1}x + \dfrac{3m - 1}{2m+1} = 0 = (x-r)^2 = x^2 - 2rx + r^2$

we get two equations:

$2r = \dfrac{4m}{2m+1}$

$r^2 = \dfrac{3m - 1}{2m + 1}$.

Thus:

$r^2 = \left(\dfrac{2m}{2m+1}\right)^2 = \dfrac{3m-1}{2m+1}$.

This allows you to solve for $m$, and thus solve for $x = r$.
 
where did you get this?

$(x-r)^2 = x^2 - 2rx + r^2$

I thought something similar to this by letting r to be the roots of my equation.

since $S = \frac{-b}{a}=r+r$

I get $\frac{-b}{a}=2r$

and $P=\frac{c}{a}=r\times r$

I get $ \frac{c}{a}=r^2$

now I will have the same equation as you do

$2r=\frac{4m}{2m+1}$

and

$r^2=\frac{3m-1}{2m+1}$

Am I thinking it the same way that you did?

the r here is the value that I will plug in place of x in my equation.

but from this $(x-r)^2 = x^2 - 2rx + r^2$ It seems x and r are different?

why is that? thanks!
 
Last edited:
In THIS equation:

$(x-r)^2 = x^2 - 2rx + r^2$

$r$ and $x$ ARE different.

But in THIS equation:

$(x - r)^2 = 0$

we must have $x - r = 0$ (0 is the square root of 0), and thus $x = r$.

And yes, you were thinking correctly, good job!
 
Oh yes that's helpful. :) thanks!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top