Finding the Sine Representation of an Odd Function Using Fourier Series

Click For Summary
The discussion focuses on finding the sine representation of the function cos(2x) using Fourier series, specifically addressing issues with the calculation of coefficients. The user initially defines an odd function and calculates the coefficients using the formula for b_n, but encounters discrepancies when plotting the series against cos(2x). It is highlighted that the user neglected to include the first few terms, particularly b_1 and b_2, which are crucial for an accurate representation. After realizing this oversight, the user acknowledges the importance of these terms for improving the plot's accuracy. The conversation emphasizes the necessity of careful coefficient calculation in Fourier series to achieve a proper match with the original function.
Morbidly_Green
Messages
12
Reaction score
0
Homework Statement
Find the Fourier sine series of cos 2x on [0, π]
Relevant Equations
$$b_n = \dfrac{2}{l} \int^\pi _0 f(x) sin(\dfrac{n\pi x}{l})dx$$
I am attempting to find the sine representation of cos 2x by letting

$$f(x) = \cos2x, x>0$$ and $$-\cos2x, x<0$$

Which is an odd function. Hence using $$b_n = \dfrac{2}{l} \int^\pi _0 f(x) \sin(\dfrac{n\pi x}{l})dx$$ I obtain $$b_n = \dfrac{2n}{\pi} \left( \dfrac{(-1)^n - 1}{4-n^2} \right)$$

which when I plot the sine series

$$\sum^\infty _{n=3} \dfrac{2n}{\pi} \left( \dfrac{(-1)^n - 1}{4-n^2} \right) \sin(n x)$$

I don't get the fn of cos 2x on [0, π]. I don't understand where I went wrong any help would be great.
 
Physics news on Phys.org
Don't follow: you make an odd continuation of ##f(x)## but don't actually use it: your bounds are 0 and ##\pi##
 
BvU said:
Don't follow: you make an odd continuation of ##f(x)## but don't actually use it: your bounds are 0 and ##\pi##
Yes, this is true, but I used the formula for $$b_n$$ that assumes I do indeed have an odd function
 
So basically you have only forced ##\ f(0) = f(\pi)=0\ ## as is necessary with a sine series.

(and integrating from ##\pi## to ##2\pi## gives the same as from 0 to ##\pi## anyway)

I tried a cheat and got (for n up to 9):

241922

so it looks your result is fine. Why do you think otherwise ?
 
When I plotted the Fourier series on top of the function cos2x they did not match

BvU said:
So basically you have only forced ##\ f(0) = f(\pi)=0\ ## as is necessary with a sine series.

(and integrating from ##\pi## to ##2\pi## gives the same as from 0 to ##\pi## anyway)

I tried a cheat and got (for n up to 9):

View attachment 241922
so it looks your result is fine. Why do you think otherwise ?
 
Morbidly_Green said:
When I plotted the Fourier series on top of the function cos2x they did not match
Like 'not at all', 'not very well', 'not perfectly' ?

Did you check the link ? it has a plot too ...

To get a good match you need an awful lot of terms: the function has to jump from 0 to 1 in a step of 'size zero' at ##x=0##
 
Edit[added]: I didn't notice your sum started at n=3. Anyway here's a plot to compare with.

@Morbidly_Green: Your problem is your formula for ##b_n## when ##n=2##. You need to calculate ##b_2## separately, and when you do, you will find than ##b_2=0##. Once you fix that, your plot should look better. Here's what I get for the first 10 terms:
fs.jpg
 
LCKurtz said:
Edit[added]: I didn't notice your sum started at n=3. Anyway here's a plot to compare with.

@Morbidly_Green: Your problem is your formula for ##b_n## when ##n=2##. You need to calculate ##b_2## separately, and when you do, you will find than ##b_2=0##. Once you fix that, your plot should look better. Here's what I get for the first 10 terms:
View attachment 241924
Ah yes! Thank you, I completely forgot that you can't just ignore the first terms !
 
  • #10
In particular ##b_1## ! Why did you start at ##n=3## ?
 
  • #11
BvU said:
In particular ##b_1## ! Why did you start at ##n=3## ?
Since n=2 would yield a division by zero I started from the first calculable term, n=3, and as I said I forgot how important the terms before are
 
  • #12
OK, thanks. All in all: well done !
 
  • #13
Morbidly_Green said:
I am attempting to find the sine representation of cos 2x by letting

$$f(x) = \cos2x, x>0$$ and $$-\cos2x, x<0$$

Which is an odd function. Hence using $$b_n = \dfrac{2}{l} \int^\pi _0 f(x) \sin(\dfrac{n\pi x}{l})dx$$ I obtain $$b_n = \dfrac{2n}{\pi} \left( \dfrac{(-1)^n - 1}{4-n^2} \right)$$

which when I plot the sine series

$$\sum^\infty _{n=3} \dfrac{2n}{\pi} \left( \dfrac{(-1)^n - 1}{4-n^2} \right) \sin(n x)$$

I don't get the fn of cos 2x on [0, π]. I don't understand where I went wrong any help would be great.

You need to keep ##a_1, a_3, a_4, \ldots##. You could also include ##a_2##, but you cannot use the general form for ##a_n##: you need to put ##a_2=0## manually.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K