Finding the Value of a Trigonometric Integral with Radical

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Radical Trig
Click For Summary
SUMMARY

The integral $$\int_0^{2\pi}\sqrt{\dfrac{1-\cos{x}}{2}}\,dx$$ evaluates to 4. The solution involves transforming the integral using the identity $$\cos x = 1 - 2\sin^2\frac{x}{2}$$, leading to the simplification $$\int_0^{2\pi}\sin{\frac{x}{2}}\,dx$$. The final evaluation yields $$I=-2\cos{\frac{x}{2}}\biggr| _0^{2\pi} = 4$$, confirming the result provided by Wolfram Alpha (W|A).

PREREQUISITES
  • Understanding of trigonometric identities, specifically $$\cos x$$ and $$\sin x$$.
  • Familiarity with integral calculus and definite integrals.
  • Knowledge of the properties of the cosine function over the interval $$[0, 2\pi]$$.
  • Ability to manipulate square roots and simplify expressions involving trigonometric functions.
NEXT STEPS
  • Study the derivation of trigonometric identities, particularly $$\cos x = 1 - 2\sin^2\frac{x}{2}$$.
  • Learn techniques for evaluating definite integrals involving trigonometric functions.
  • Explore the use of Wolfram Alpha for verifying integral calculations.
  • Investigate the properties of the sine function and its applications in integrals.
USEFUL FOR

Students and educators in mathematics, particularly those focused on calculus and trigonometry, as well as anyone interested in evaluating complex integrals involving trigonometric functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Evaluate
$$\int_0^{2\pi}\sqrt{\dfrac{1-\cos{x}}{2}}\,dx$$
ok my baby step is
$$\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx$$
then ?

W|A said the answer was 4
 
Physics news on Phys.org
karush said:
Evaluate
$$\int_0^{2\pi}\sqrt{\dfrac{1-\cos{x}}{2}}\,dx$$
ok my baby step is
$$\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx$$
then ?

W|A said the answer was 4
$\cos x = 1 - 2\sin^2\frac x2$
 
$$I=\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{1-\left(1 - 2\sin^2\dfrac x2\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{2\sin^2{\dfrac x2}}}{\sqrt{2}}=\int _0^{2\pi }\sin{\frac x2}\,dx $$
then
$$I=-2\cos{\dfrac x2}\biggr| _0^{2\pi }=$$

ok I don't see this approaching 4
 
karush said:
$$I=\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{1-\left(1 - 2\sin^2\dfrac x2\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{2\sin^2{\dfrac x2}}}{\sqrt{2}}=\int _0^{2\pi }\sin{\frac x2}\,dx $$
then
$$I=-2\cos{\dfrac x2}\biggr| _0^{2\pi }=$$

ok I don't see this approaching 4
$$I=-2\cos{\dfrac x2}\biggr| _0^{2\pi }= -2(\cos\pi - \cos0) = -2(-1 - 1) = 4$$
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K