MHB Finding the Value of a Trigonometric Integral with Radical

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Radical Trig
Click For Summary
The integral $$\int_0^{2\pi}\sqrt{\dfrac{1-\cos{x}}{2}}\,dx$$ simplifies to $$\int_0^{2\pi}\sin{\frac{x}{2}}\,dx$$ after substituting $$\cos x$$ with $$1 - 2\sin^2{\frac{x}{2}}$$. Evaluating this integral yields $$I = -2\cos{\frac{x}{2}} \biggr|_0^{2\pi}$$. The calculation shows that $$I = -2(-1 - 1) = 4$$. Thus, the value of the integral is confirmed to be 4.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Evaluate
$$\int_0^{2\pi}\sqrt{\dfrac{1-\cos{x}}{2}}\,dx$$
ok my baby step is
$$\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx$$
then ?

W|A said the answer was 4
 
Physics news on Phys.org
karush said:
Evaluate
$$\int_0^{2\pi}\sqrt{\dfrac{1-\cos{x}}{2}}\,dx$$
ok my baby step is
$$\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx$$
then ?

W|A said the answer was 4
$\cos x = 1 - 2\sin^2\frac x2$
 
$$I=\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{1-\left(1 - 2\sin^2\dfrac x2\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{2\sin^2{\dfrac x2}}}{\sqrt{2}}=\int _0^{2\pi }\sin{\frac x2}\,dx $$
then
$$I=-2\cos{\dfrac x2}\biggr| _0^{2\pi }=$$

ok I don't see this approaching 4
 
karush said:
$$I=\int _0^{2\pi }\frac{\sqrt{1-\cos \left(x\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{1-\left(1 - 2\sin^2\dfrac x2\right)}}{\sqrt{2}}dx=
\int _0^{2\pi }\dfrac{\sqrt{2\sin^2{\dfrac x2}}}{\sqrt{2}}=\int _0^{2\pi }\sin{\frac x2}\,dx $$
then
$$I=-2\cos{\dfrac x2}\biggr| _0^{2\pi }=$$

ok I don't see this approaching 4
$$I=-2\cos{\dfrac x2}\biggr| _0^{2\pi }= -2(\cos\pi - \cos0) = -2(-1 - 1) = 4$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
4
Views
4K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K