Finding the value of k (spring constant)

Click For Summary
The engineer needs to determine the spring constant (k) after stretching a light spring 1.4m and requiring 100J of work to stretch it an additional 1.5m. The calculations involve using the work-energy principle, where the total work done is equal to the potential energy stored in the spring. The equations W1 = 1/2k*(1.4)^2 and W2 = 100J are used to find the total work for the full extension of 2.9m. The resulting calculation gives k = 31 N/M, confirming the relationship between work done and potential energy in the spring. Understanding that the work done to stretch the spring is equivalent to the potential energy stored clarifies the confusion regarding the equations used.
p0ps1c1e
Messages
10
Reaction score
0
During a test experiment, the engineer finds an ideal very light spring has already been stretched 1.4m from its original length. He also finds that he needs to perform 100J of work to further stretch this spring an additional 1.5m. What is the value of the spring constant for this spring?

Homework Equations



W = F*d

F = -kx

So I wrote out that F1 = -kx to stretch the spring the initial 1.4m and then to stretch it the additional 1.5m it would take:

F2 +F1 = -2.9*k

I also wrote out:

F1 = -1.5k

Then I used 100 = F2*1.5

so F2 = 66.67 although I'm not sure if you can use this equation for a spring

Then 66.67 -1.5k = -2.9k and I tried solving for k but that didn't work so I'm not sure what else to try.
 
Physics news on Phys.org
p0ps1c1e said:
Then I used 100 = F2*1.5
There are two problems with that approach. First, your F2 is the additional force to get the extra 1.5m extension, but while extending it that 1.5m the total force applied is between F1and F1+F2. Therefore F1is an important part of the work done.
Secondly, the force only reaches F1+F2 at full extension, so neither can you write 100 = (F1+F2)*1.5.

In terms of k, what work was done to stretch it 1.4m? What total work was done to stretch it 1.4+1.5m?
 
So W1 = 1/2k*(1.4)^2 = 0.98k
W2 = 100
WorkTotal = 1/2k(2.9)^2 = 4.205k

Then I put it together 4.205k = 0.98k + 100J

so k = 31 N/M ?

Also, I thought 1/2kx^2 was for potential energy of a spring. So I'm kind of confused about the difference between the two now
 
p0ps1c1e said:
so k = 31 N/M ?
Looks right.
p0ps1c1e said:
I thought 1/2kx^2 was for potential energy of a spring.
The work done to stretch a spring (from slack) equals the potential energy stored in the spring (assuming no losses). Where's the confusion?
 
Thanks. I guess I just need to review this chapter some more
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
Replies
29
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
20
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K